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Next: Finite automata

Ch. 1.1: Deterministic finite automata
(DFA)

We will :
* Design automata for simple problems

» Study languages recognized by finite
automata.
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Recognizing finite languages

* Just need a lookup table and a search
algorithm

* Problem — cannot express infinite sets,
e.g. odd integers
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Finite Automata

he simplest machine that can recognize
an infinite language.

7 11

“Read once”, “"no write” procedure.

Useful for describing algorithms also.
Used a lot in network protocol description.

Remember: DFA’s can accept finite
languages as well.
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A Simple Automaton (0)
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A Simple Automaton (1)

0 1
) []
/\(—\
- 53
V\/
0,1

on input “0110", the machine goes:
g —>ds—>q, > 9, > q; = reject”
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A Simple Automaton (2)
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on input “1017, the machine goes.:
q; > J, > 0g; > q, = "accept’
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A Simple Automaton (3)
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010: reject
11: accept

010100100100100: accept
010000010010: reject
e: reject
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Examples of languages
accepted by DFA

w ends with 1}
w contains sub-string 00}

e L={w
e L={w
e L={w
e L={w
e L={w

W
W

W

is divisible by 3}
IS odd or w ends with 1}
is divisible by 106}

Note: X ={0,1} in each case
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DFA design

* Design DFA for language

— L ={w € {0,1}" | w contains substring 01}
* Three states to remember:

— Have seen the substring 01

— Not seen substring 01 and last symbol was O

— Not seen substring 01 and last symbol was
not O

« General principles?
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DFA : Formal definition

* A deterministic finite automaton (DFA)
M is defined by a 5-tuple M=(Q,%,5,q9,,F)

— Q: finite set of states

— 2. finite alphabet

— 9: transition function 5:QxX—Q
— g€ Q: start state

— FcQ: set of accepting states
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M = (Q,2!6!q!F)

states Q = {q,,9,,93}
alphabet > = {0,1}

start state g —

accept states F={q,}

transition function 9:

Q/“Q/\ w

0 1
d; |41 Gy
d, |43 Q;
d; 142 G
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Recognizing Languages (defn)

A finite automaton M = (Q,,5,q,F) accepts
a string/word w = w,...w, if and only if there is a
sequence r,...r, of states in Q such that:

1) r0=10qo

3) r,eF
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Regular Languages

The language recognized by a finite
automaton M is denoted by L(M).

A reqular language is a language
for which there exists a recognizing
finite automaton.
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Two DFA Questions

Given the description of a finite
automaton M = (Q,%,9,q,F), what is
the language L(M) that it recognizes?

In general, what kind of languages
can be recognized by finite automata®
(What are the regular languages?)
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Union of Two Languages

Theorem 1.12: If A, and A, are regular
languages, then so is A, U A..

(The regular languages are ‘closed’ under
the union operation.)

Proof idea: A, and A, are regular, hence there are
two DFA M, and M,, with A,=L(M,) and A,=L(M,).
Out of these two DFA, we will make a third
automaton M, such that L(M;) = A, U A,.
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Proof Union-Theorem (1)
M,=(Q4,%,64,9,,F ;) and M,=(Q,,%,5,,9,,F5)

Define M; = (Q5,2,04,95,F3) by:
° Q3 - Q1XQ2 - {(r1,r2) | F1EQ1 and rzeQz}

* 33((r4,rp),@) = (04(ry,a), 0,(ry,a))

* d3 = (94,05)

* F3={(ry,ry) | ryeF, orryek,}
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Proof Union-Theorem (2)

The automaton M, = (Q;,%,05,95,F3) runs M,
and M, in ‘parallel’ on a string w.

In the end, the final state (r,,r,) '’knows’
if wel, (viar,eF,?)and if wel, (viar,eF,?)

The accepting states F; of M; are such that
wel(M,) if and only if wel, orwel,, for:
Fs ={(ry,rp) | ryeFy orrpek ).
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Concatenation of L, and L,

Definition: L L, = { xy | xeL, and yelL, }
Example: {a,b} * {0,11} = {a0,a11,b0,b11}

Theorem 1.13: If L, and L, are regular
langues, then so is L,-L..

(The regular languages are ‘closed’ under
concatenation.)
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Proving Concatenation Thm.

Consider the concatenation:
{1,01,11,001,011,...} - {0,000,00000,...}
(That is: the bit strings that end with a “17,
followed by an odd number of 0’s.)

Problem is: given a string w, how does
the automaton know where the L, part
stops and the L, substring starts?

We need an M with ‘lucky guesses’.
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Nondeterminism

Nondeterministic machines are capable
of being lucky, no matter how small the

probability.

A nondeterministic finite automaton
has transition rules/possibilities like
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A Nondeterministic Automaton
0,1 0,1

)

- I ‘ ‘ ‘ ‘

This automaton accepts “01107, because
there is a possible path that leads to an
accepting state, namely:

4 >0 >4 > 03 > 4, —> Q4
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A Nondeterministic Automaton
0,1 0,1

(2/\/\/\@

. ‘ ‘ ‘

he string 1 gets rejected: on “1” the
automaton can only reach: {q4,9,,05}-
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Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic
automaton can be in a set of possible states.

If the final set contains an accepting state,
then the automaton accepts the string.

“The automaton processes the input in a
parallel fashion. Its computational path
IS no longer a line, but a tree.” (Fig. 1.16)
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Nondeterministic FA (def.)

* A nondeterministic finite automaton
(NFA) M is defined by a 5-tuple
M=(Q,X,0,q,,F), with

—Q: finite set of states
—2: finite alphabet
—9: transition function 6:QxZ_—®(Q)

—(Q,€Q: start state
—FcQ: set of accepting states
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Nondeterministic 5:QxZ_—»>®(Q)

The function 5:QxX,—®(Q) is the crucial

difference. It means:
“When reading symbol “a” while in state q,
one can go to one of the states in 6(q,a)cQ.”

The ¢in X = Xu{e} takes care of the
empty string transitions.
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Recognizing Languages (def)

A nondeterministic FA M = (Q,X,5,q,F) accepts
a string w = w,...w, if and only if we can rewrite

w asy,...y, with y,eX  andthere is a sequence
ry-..Iy, Of states in Q such that:

1) ro=ao
2) ri,4 € 9(r,y;,4) for all i=0,...,m-1

3) r,eF

m
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Exercises

[Sipser 1.5]. Give NFAs with the specified
number of states that recognize the following
languages over the alphabet ~={0,1}:

1. { w | w ends with 00}, three states

2. {0}; two states
3. { w | w contains even number of 0s, or exactly

two 1s}, six states
4. {O" | neN }, one state
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Exercises - 2

Proof the following result:
‘If Ly and L, are regular languages, then
L, nL, IS a regular language too.”

Describe the language that is recognized
by this nondeterministic automaton:

1 0,1

. 0 cf\b/j‘g
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