
1/16/2013 CSE 2001, Winter 2013 1

CSE 2001:
Introduction to Theory of Computation

Winter 2013

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

1/16/2013 CSE 2001, Winter 2013 2

Next: Finite automata
Ch. 1.1: Deterministic finite automata
(DFA)

We will :
• Design automata for simple problems
• Study languages recognized by finite
automata.

1/16/2013 CSE 2001, Winter 2013 3

Recognizing finite languages
• Just need a lookup table and a search

algorithm
• Problem – cannot express infinite sets,

e.g. odd integers

1/16/2013 CSE 2001, Winter 2013 4

Finite Automata
The simplest machine that can recognize
an infinite language.

“Read once”, “no write” procedure.

Useful for describing algorithms also.
Used a lot in network protocol description.

Remember: DFA’s can accept finite
languages as well.

1/16/2013 CSE 2001, Winter 2013 5

A Simple Automaton (0)

q1 q2 q3

1 0

0,1

0 1

statestransition
rules

starting state

accepting state

1/16/2013 CSE 2001, Winter 2013 6

A Simple Automaton (1)

q1 q2 q3

1 0

0,1

0 1

on input “0110”, the machine goes:
q1 → q1 → q2 → q2 → q3 = “reject”

start
accept

1/16/2013 CSE 2001, Winter 2013 7

A Simple Automaton (2)

q1 → q2 → q3 → q2 = “accept”

q1 q2 q3

1 0

0,1

0 1

on input “101”, the machine goes:

1/16/2013 CSE 2001, Winter 2013 8

A Simple Automaton (3)

010: reject
11: accept
010100100100100: accept
010000010010: reject
ε: reject

q1 q2 q3

1 0

0 1

0,1

1/16/2013 CSE 2001, Winter 2013 9

Examples of languages
accepted by DFA

• L = { w | w ends with 1}
• L = { w | w contains sub-string 00}
• L = { w | |w| is divisible by 3}
• L = { w | |w| is odd or w ends with 1}
• L = { w | |w| is divisible by 106}

Note: Σ = {0,1} in each case

1/16/2013 CSE 2001, Winter 2013 10

DFA design
• Design DFA for language

– L = {w ∈ {0,1}* | w contains substring 01}
• Three states to remember:

– Have seen the substring 01
– Not seen substring 01 and last symbol was 0
– Not seen substring 01 and last symbol was

not 0
• General principles?

1/16/2013 CSE 2001, Winter 2013 11

DFA : Formal definition
• A deterministic finite automaton (DFA)

M is defined by a 5-tuple M=(Q,Σ,δ,q0,F)

– Q: finite set of states
– Σ: finite alphabet
– δ: transition function δ:Q×Σ→Q
– q0∈Q: start state
– F⊆Q: set of accepting states

1/16/2013 CSE 2001, Winter 2013 12

M = (Q,Σ,δ,q,F)

states Q = {q1,q2,q3}

alphabet Σ = {0,1}

start state q1

accept states F={q2}

transition function δ:

223

232

211

qqq
qqq
qqq
10

q1 q2 q3

1 0
0 1

0,1

1/16/2013 CSE 2001, Winter 2013 13

Recognizing Languages (defn)

A finite automaton M = (Q,Σ,δ,q,F) accepts
a string/word w = w1…wn if and only if there is a
sequence r0…rn of states in Q such that:

1) r0 = q0

2) δ(ri,wi+1) = ri+1 for all i = 0,…,n–1

3) rn ∈ F

1/16/2013 CSE 2001, Winter 2013 14

Regular Languages

The language recognized by a finite
automaton M is denoted by L(M).

A regular language is a language
for which there exists a recognizing
finite automaton.

1/16/2013 CSE 2001, Winter 2013 15

Two DFA Questions

Given the description of a finite
automaton M = (Q,Σ,δ,q,F), what is
the language L(M) that it recognizes?

In general, what kind of languages
can be recognized by finite automata?
(What are the regular languages?)

1/16/2013 CSE 2001, Winter 2013 16

Union of Two Languages

Theorem 1.12: If A1 and A2 are regular
languages, then so is A1 ∪ A2.
(The regular languages are ‘closed’ under
the union operation.)

Proof idea: A1 and A2 are regular, hence there are
two DFA M1 and M2, with A1=L(M1) and A2=L(M2).
Out of these two DFA, we will make a third
automaton M3 such that L(M3) = A1 ∪ A2.

1/16/2013 CSE 2001, Winter 2013 17

Proof Union-Theorem (1)
M1=(Q1,Σ,δ1,q1,F1) and M2=(Q2,Σ,δ2,q2,F2)

Define M3 = (Q3,Σ,δ3,q3,F3) by:
• Q3 = Q1×Q2 = {(r1,r2) | r1∈Q1 and r2∈Q2}

• δ3((r1,r2),a) = (δ1(r1,a), δ2(r2,a))

• q3 = (q1,q2)

• F3 = {(r1,r2) | r1∈F1 or r2∈F2}

1/16/2013 CSE 2001, Winter 2013 18

Proof Union-Theorem (2)

The automaton M3 = (Q3,Σ,δ3,q3,F3) runs M1
and M2 in ‘parallel’ on a string w.

In the end, the final state (r1,r2) ‘knows’
if w∈L1 (via r1∈F1?) and if w∈L2 (via r2∈F2?)

The accepting states F3 of M3 are such that
w∈L(M3) if and only if w∈L1 or w∈L2, for:
F3 = {(r1,r2) | r1∈F1 or r2∈F2}.

1/16/2013 CSE 2001, Winter 2013 19

Concatenation of L1 and L2

Definition: L1• L2 = { xy | x∈L1 and y∈L2 }

Example: {a,b} • {0,11} = {a0,a11,b0,b11}

Theorem 1.13: If L1 and L2 are regular
langues, then so is L1•L2.
(The regular languages are ‘closed’ under
concatenation.)

1/16/2013 CSE 2001, Winter 2013 20

Proving Concatenation Thm.

Consider the concatenation:
{1,01,11,001,011,…} • {0,000,00000,…}
(That is: the bit strings that end with a “1”,
followed by an odd number of 0’s.)

Problem is: given a string w, how does
the automaton know where the L1 part
stops and the L2 substring starts?

We need an M with ‘lucky guesses’.

1/16/2013 CSE 2001, Winter 2013 21

Nondeterminism

Nondeterministic machines are capable
of being lucky, no matter how small the
probability.

A nondeterministic finite automaton
has transition rules/possibilities like

q1 q2

ε
q1

q21

q31

1/16/2013 CSE 2001, Winter 2013 22

A Nondeterministic Automaton

q1 q2 q3

1 0, ε

0,1

This automaton accepts “0110”, because
there is a possible path that leads to an
accepting state, namely:
q1 → q1 → q2 → q3 → q4 → q4

q4

1

0,1

1/16/2013 CSE 2001, Winter 2013 23

A Nondeterministic Automaton

q1 q2 q3

1 0, ε

0,1

The string 1 gets rejected: on “1” the
automaton can only reach: {q1,q2,q3}.

q4

1

0,1

1/16/2013 CSE 2001, Winter 2013 24

Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic
automaton can be in a set of possible states.

If the final set contains an accepting state,
then the automaton accepts the string.

“The automaton processes the input in a
parallel fashion. Its computational path
is no longer a line, but a tree.” (Fig. 1.16)

1/16/2013 CSE 2001, Winter 2013 25

Nondeterministic FA (def.)
• A nondeterministic finite automaton

(NFA) M is defined by a 5-tuple
M=(Q,Σ,δ,q0,F), with

– Q: finite set of states
–Σ: finite alphabet
–δ: transition function δ:Q×Σε→P (Q)
– q0∈Q: start state
– F⊆Q: set of accepting states

1/16/2013 CSE 2001, Winter 2013 26

Nondeterministic δ:Q×Σε→P (Q)

The function δ:Q×Σε→P (Q) is the crucial
difference. It means:
“When reading symbol “a” while in state q,
one can go to one of the states in δ(q,a)⊆Q.”

The ε in Σε = Σ∪{ε} takes care of the
empty string transitions.

1/16/2013 CSE 2001, Winter 2013 27

Recognizing Languages (def)

A nondeterministic FA M = (Q,Σ,δ,q,F) accepts
a string w = w1…wn if and only if we can rewrite
w as y1…ym with yi∈Σε and there is a sequence
r0…rm of states in Q such that:

1) r0=q0

2) ri+1 ∈ δ(ri,yi+1) for all i=0,…,m–1

3) rm ∈ F

1/16/2013 CSE 2001, Winter 2013 28

Exercises

[Sipser 1.5]: Give NFAs with the specified
number of states that recognize the following
languages over the alphabet Σ={0,1}:

1. { w | w ends with 00}, three states
2. {0}; two states
3. { w | w contains even number of 0s, or exactly

two 1s}, six states
4. {0n | n∈N }, one state

1/16/2013 CSE 2001, Winter 2013 29

Exercises - 2

Proof the following result:
“If L1 and L2 are regular languages, then

is a regular language too.”

Describe the language that is recognized
by this nondeterministic automaton:

21 LL ∩

q1 q2 q3

1 0, ε
1

q4

1

0,1

ε

