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CSE 2001:
Introduction to Theory of Computation

Winter 2013

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001
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Michael Sipser. 
Introduction to the 

Theory of Computation, 
Third Edition. Cengage

Learning, 2013.

Lectures: Mon, Wed 2:30–4 pm (CLH M)

Office hours: Mon 4-6 pm, Tue 3-4 pm,
(CSEB 3043), or by appointment.

TA: Paria Mehrani, will lead tutorials 
(problem-solving sessions).  

http://www.cse.yorku.ca/course/2001

Webpage: All announcements/handouts 
will be published on the webpage --
check often for updates)

Textbook:
Administrivia
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Administrivia – contd.
Grading:

2 Midterms : 20% + 20% (in class)
Final: 40% 
Assignments (4 sets): 20%

Grades will be on ePost (linked from the webpage)

Notes:

1. All assignments are individual.
2. There MAY be an extra credit quiz. This will be 

announced beforehand.
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Plagiarism: Will be dealt with very strictly. Read the detailed 
policies on the webpage.

Handouts (including solutions): in /cs/course/2001, or on the 
webpage

Slides: Will usually be on the web the morning of the class. 
The slides are for MY convenience and for helping you 
recollect the material covered. They are not a substitute 
for, or a comprehensive summary of, the textbook.

Resources: We will follow the textbook closely. 

There are more resources than you can possibly read –
including books, lecture slides and notes.

Administrivia – contd.
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Recommended strategy
• This is an applied Mathematics course --

practice instead of reading.
• Try to get as much as possible from the 

lectures.
• If you need help, get in touch with me early.
• If at all possible, try to come to the class with 

a fresh mind.
• Keep the big picture in mind. ALWAYS.
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Course objectives - 1
Reasoning about computation
• Different computation models

– Finite Automata
– Pushdown Automata
– Turing Machines

• What these models can and cannot do
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Course objectives - 2
• What does it mean to say “there does 

not exist an algorithm for this problem”?

• Reason about the hardness of problems

• Eventually, build up a hierarchy of 
problems based on their hardness.
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Course objectives - 3
• We are concerned with solvability, NOT 

efficiency.
• CSE 3101 (Design and Analysis of 

Algorithms) efficiency issues. 
• Learn to make and prove assertions 

about computational models.
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Reasoning about Computation

Computational problems may be
• Solvable, quickly
• Solvable in principle, but takes an 

infeasible amount of time (e.g. 
thousands of years on the fastest 
computers available)

• (provably) not solvable
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Theory of Computation: parts

• Automata Theory (CSE 2001)

• Complexity Theory (CSE 3101, 4115)

• Computability Theory (CSE 2001, 4101)
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Reasoning about Computation - 2
• Need formal reasoning to make credible 

conclusions
• Mathematics is the language developed 

for formal reasoning
• As far as possible, we want our 

reasoning to be intuitive
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Next:
Ch. 0:Set notation and languages

•Sets and sequences
•Tuples
•Functions and relations
•Graphs
•Boolean logic:     

•Review of proof techniques
•Construction, Contradiction, Induction…

Some of these slides are adapted from Wim van Dam’s slides
(www.cs.berkeley.edu/~vandam/CS172/) and from Nathaly Verwaal
(http://cpsc.ucalgary.ca/~verwaal/313/F2005)
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Topics you should know:

• Elementary set theory
• Elementary logic
• Functions
• Graphs 
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Set Theory review
• Definition
• Notation: A = { x | x  N , x mod 3 = 1} 

N = {1,2,3,…}
• Union: AB
• Intersection: AB
• Complement: 
• Cardinality: |A|
• Cartesian Product:

AB = { (x,y) | xA and yB}

A
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Some Examples

L<6 = { x | x  N , x<6 }
Lprime = {x| x  N, x is prime}
L<6  Lprime = {2,3,5}

 = {0,1}
= {(0,0), (0,1), (1,0), (1,1)}

Formal: AB = { x | xA and xB}
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Power set
“Set of all subsets”
Formal: P (A) = { S | S A}

Example: A = {x,y}
P (A) = { {} , {x} , {y} , {x,y} }

Note the different sizes: for finite sets
|P (A)| = 2|A|

|AA| = |A|2
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Logic: review
Boolean logic:   
Quantifiers: , 

statement: Suppose x  N, y  N.
Then x y y > x    
for any integer, there exists a larger integer

: a  b “is the same as” (is logically 
equivalent to)   a  b

: a  b is logically equivalent to 
(a  b) (b  a) 
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Logic: review - 2
Contrapositive and converse:
the converse of a  b is b  a 
the contrapositive of a  b is  b   a 

Any statement is logically equivalent to its 
contrapositive, but not to its converse.
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Logic: review - 3
Negation of statements
 (x y y > x) “=“ x y y  x

(LHS: negation of “for any integer, there exists a 
larger integer”, RHS: there exists a largest integer)

TRY: (a  b) = ? 
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Logic: review - 4
Understand quantifiers
x y P(y, x) is not the same as 
y x P(y, x)
Consider P(y,x ): x  y.  
x y x  y is TRUE over N (set y = x + 1) 
y x x  y is FALSE over N (there is no 

largest number in N)



1/7/2013 CSE 2001, Winter 2013 21

Functions: review
• f: A  C 
• f: A x B  C

Examples: 
• f: N  N, f(x) = 2x
• f: N x N  N, f(x,y) = x + y
• f: A x B  A, A = {a,b}, B = {0,1} 

0  1
a  a  b
b  b  a
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Functions: an alternate view
Functions as lists of pairs or k-tuples
• E.g. f(x) = 2x
• {(1,2), (2,4), (3,6),….}
• For the function below: 

{(a,0,a),(a,1,b),(b,0,b),(b,1,a)}

0  1
a  a  b
b  b  a
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Next: Terminology
• Alphabets
• Strings
• Languages
• Problems, decision problems
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Alphabets
• An alphabet is a finite non-empty set.
• An alphabet is generally denoted by the 

symbols Σ, .
• Elements of Σ, called symbols, are often 

denoted by lowercase letters, e.g., 
a,b,x,y,..
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Strings (or words)
• Defined over an alphabet Σ
• Is a finite sequence of symbols from Σ
• Length of string w (|w|) – length of sequence
• ε – the empty string is the unique string with 

zero length.
• Concatenation of w1 and w2  – copy of  w1

followed by copy of w2
• xk = x x x x x …x( k times)
• wR - reversed string; e.g. if w = abcd then wR

= dcba.
• Lexicographic ordering : definition
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Languages
• A language over Σ is a set of strings over Σ
• Σ* is the set of all strings over Σ
• A language L over Σ is a subset of Σ* (L  Σ*)
• Typical examples: 

- ={0,1}, the possible words over  are the    
finite bit strings.

- L = { x | x is a bit string with two zeros }
- L = { anbn | n  N }
- L = {1n | n is prime}
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Concatenation of languages

Caveat: Do not confuse the concatenation of 
languages with the Cartesian product of sets.

For example, let A = {0,00} then

A•A = { 00, 000, 0000 } with |A•A|=3,

AA = { (0,0), (0,00), (00,0), (00,00) } 
with |AA|=4

Concatenation of two langauges: 
A•B = { xy | xA and yB }
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Problems and Languages
• Problem: defined using input and output

– compute the shortest path in a graph
– sorting a list of numbers
– finding the mean of a set of numbers.

• Decision Problem: output is yes/no (or 
1/0)

• Language: set of all inputs where output 
is yes
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Historical perspective
• Many models of computation from 

different fields
– Mathematical logic
– Linguistics
– Theory of Computation

Formal language
theory
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Input/output vs decision 
problems

Input/output problem: “find the mean of n 
integers”

Decision Problem: output is either yes or no
“Is the mean of the n numbers equal to k ?”

You can solve the decision problem if and 
only if you can solve the input/output 
problem.
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Example – Code Reachability
• Code Reachability Problem:

– Input: Java computer code
– Output: Lines of unreachable code.

• Code Reachability Decision Problem:
– Input: Java computer code and line number
– Output: Yes, if the line is reachable for some input, 

no otherwise.
• Code Reachability Language:

– Set of strings that denote Java code and 
reachable line.
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Example – String Length
• Decision Problem:

– Input: String w
– Output: Yes, if |w| is even

• Language:
– Set of all strings of even length.
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Relationship to functions
• Use the set of k-tuples view of functions 

from before.
• A function is a set of k-tuples (words) 

and therefore a language.
• Shortest paths in graphs – the set of 

shortest paths is a set of paths (words) 
and therefore a language. 



1/7/2013 CSE 2001, Winter 2013 34

Recognizing languages
• Automata/Machines accept languages.
• Also called “recognizing languages”.

• The power of a computing model is 
related to, and described by, the 
languages it accepts/recognizes.

• Tool for studying different models
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Recognizing Languages - 2
• Let L be a language  S

• a machine M recognizes L if

MxS
“accept”

“reject” if and only if xL

if and only if xL
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Recognizing languages - 3
• Minimal spanning tree problem solver

Yes/no
cost

tree
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Recognizing languages - 4
• Tools from language theory
• Expressibility of languages
• Fascinating relationship between the 

complexity of problems and power of 
languages
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Graphs: review
• Nodes, edges, weights
• Undirected, directed
• Cycles, trees
• Connected
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Proofs
• What is a proof?
• Does a proof need mathematical 

symbols?
• What makes a proof incorrect?
• How does one come up with a proof?
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Proof techniques (Sipser 0.4)
• Proof by cases.
• Proof by contrapositive
• Proof by contradiction
• Proof by construction
• Proof by induction
• Others …..
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Proof by cases
If n is an integer, then n(n+1)/2 is an integer
• Case 1: n is even.

or n = 2a, for some integer a
So n(n+1)/2 = 2a*(n+1)/2 = a*(n+1),
which is an integer.

•Case 2:  n is odd.
n+1 is even, or n+1 = 2a, for an integer a
So n(n+1)/2 = n*2a/2 = n*a,
which is an integer.
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Proof by contrapositive - 1
If x2 is even, then x is even
• Proof 1 (DIRECT): 

x2 = x*x = 2a
So 2 divides x. 

•Proof 2: prove the contrapositive!
if x is odd, then x2 is odd.
x = 2b + 1. So x2 = 4b2 + 4b + 1 (odd)
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Proof by contrapositive - 2
If (pq)  (p+q)/2, then p  q
Proof 1: By squaring and transposing

(p+q)2  4pq, or
p2+q2 +2pq  4pq, or
p2+q2 -2pq  0, or
(p-q)2  0, or
p-q  0, or p  q.

Proof 2: prove the contrapositive! 
If p = q, then (pq) = (p+q)/2
Easy: (pq) = (pp) = (p2) = p = (p+p)/2 = 
(p+q)/2.
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Proof by contradiction 
2 is irrational
• Suppose 2 is rational. Then 2 = p/q,

such that p, q have no common factors.
Squaring and transposing,

p2 = 2q2 (even number)
So, p is even (previous slide) 
Or p = 2x for some integer x
So 4x2 = 2q2 or q2 = 2x2 

So, q is even (previous slide)
So, p,q are both even – they have a common 

factor of 2. CONTRADICTION.
So 2 is NOT rational.                 Q.E.D.
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Proof by construction
There exists irrational b,c, such that bc is 

rational

Consider 22. Two cases are possible:
• Case 1: 22 is rational – DONE (b = c = 2).

• Case 2: 22 is irrational – Let b = 22, c = 2.
Then bc = (22)2 = (2)2*2 = (2)2 = 2
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Debug this “proof”
For each positive real number a, there 
exists a real number x such that x2 >a

Proof: We know that 2a > a
So (2a)2 = 4a2 > a
So use x = 2a.
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Proof by induction
Format: 
•Inductive hypothesis, 
•Base case, 
•Inductive step.
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Proof by induction
Prove: For any n  N, n3-n is divisible by 3.

IH: P(n): For any n  N, f(n)=n3-n is divisible by 3.
Base case: P(1) is true, because f(1)=0. 
Inductive step: 
Assume P(n) is true. Show P(n+1) is true. 
Observe that f(n+1) – f (n) = 3(n2 + n) 
So f(n+1) – f (n) is divisible by 3.
Since P(n) is true, f(n) is divisible by 3.
So f(n+1) is divisible by 3. 
Therefore, P(n+1) is true. 
Exercise: give a direct proof.
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Next: Finite automata

Ch. 1: Deterministic finite automata (DFA)

Look ahead: 
We will study languages recognized by finite 
automata.


