
13-­‐01-­‐10	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Lecture 02

Winter 2013  Thursday, January 10, 2013

2

Objectives for this class meeting
•  Review and discussion of course description

•  reference: Department of CSE “minicalendar”

•  Presentation of course roadmap
•  Discussion and feedback

•  Topic: Software Design vs User Centered Design
•  objective: understand the difference between the two

methodologies, in a general way

3

CSE 1720 3.0 Building Interactive Systems

This course continues an introduction to computer programming within the
context of image, sound and interaction, subsequent to CSE1710 3.0. The
student’s foundation in basic programming will serve as a platform from which
to explore the use of diverse media within interactive systems, including the
WWW and simple game systems.

Topics include:
•  User Interfaces (UIs)
•  UI Elements
•  Event driven programming
•  Intro to threads
•  User Interface Builders
•  Guidelines for UI design
•  Objects, classes and inheritance
•  Interactive WWW-based systems - introduction to WWW and basic network concepts, HTML,

Javascript, other WWW technologies (e.g. Flash), guidelines for WWW design
•  How to design simple games and make them engaging

Prerequisites: CSE1710 3.0 Course Credit Exclusions: CSE1020 3.0,
ITEC1620 3.0, ITEC1630 3.0

 4

Course Roadmap
•  Design Task: Create a single-player game

•  Design Iteration #1: Storyboards, prototypes, graphics
•  UI elements, Guidelines for UI design

•  Design Iteration #2: The data model
•  inheritance, collections framework

•  Design Iteration #3: Connecting the graphics to the data model
•  event driven programming, threads
•  the observer pattern

•  Design Iteration #4: Creating a controller to interpret user input
actions and to implement game logic
•  model-view-controller

13-­‐01-­‐10	

2	

5

Course Evaluation
•  4 Written Tests 40%

•  covering design iteration #1 (5%)
•  covering design iteration #2 (10%)
•  covering design iteration #3 (10%)
•  covering design iteration #4 (15%, final exam period)

•  4 Labtests 40%
•  covering design iteration #1 (5%)
•  covering design iteration #2 (10%)
•  covering design iteration #3 (10%)
•  covering design iteration #4 (15%, final exam period)

•  Preparatory/In-Class Exercises 20%
•  both written and code-based 6

Course Evaluation
•  During Term 70%

•  exercises 20%
•  written tests (x3) 35%
•  labtests (x3) 35%

•  Final Exam Period 30%
•  written tests 15%
•  labtests 15%

•  decision: 70-30 split vs 80-20 split

7

Course Content
•  Decision

•  we work on the same game all together OR
each works on their own game?

•  Comparison
•  each student works on own game

•  game tailored to own interests
•  much more work and time investment
•  less direct guidance from instructor

•  same game
•  game tailored to class’s common interest (to the extent

possible)
•  greater degree of direct guidance from instructor

•  all students work on the same game
•  all students work on their own game
•  student choice: work on the class game or work on your

own game

8

Design Methodologies
•  Discuss similarities of and differences between:

•  The Waterfall Development Methodology (Ch 7, JBA)
•  The Iterative Software Development Methodology (Ch 7,

JBA)
•  User-Centered Design (UCD) (many reference texts)

•  Engineering Design (professional accreditation)
•  “Design” (product design, digital media design, etc)

•  Development phase vs Production phase

13-­‐01-­‐10	

3	

9

Design Methodologies
•  Contexts in which a methodology might be used:

•  software needs of private/public sector companies,
provided on a fee-for-service basis or by a company’s
internal resources
•  capitalist domain

•  software needs for cultural objects and systems
•  things that are not sold, but exhibited, displayed, or

otherwise shared; not capitalist

•  Think of the roles that people occupy within these
contexts and the expectations that would be attached
•  business client
•  end-users

10

The Waterfall Methodology

REQUIREMENTS

DESIGN

IMPLEMENTATION

TESTING

DEPLOYMENT

Copyright © 2006 Pearson Education Canada Inc.

11

The Factor of Risk
•  What kind of risk are we talking about?

•  Impact on user and/or use scenario if the software
operates differently than expected
•  how crucial?

•  life or death? (to people, to the company)
•  or merely unpleasant/undesireable

•  Risks arise from many sources:
•  software architecture itself

•  depend on other implementers? perhaps contain errors
•  complex functioning? perhaps problems exist

•  e.g., Therac-25 case study (google it)

•  the requirements may change during or after the design
•  the underlying assumptions may be wrong

12

Risk Mitigation
•  Risk mitigation

•  also known as “risk reduction”
•  we cannot eliminate risk, but try to reduce the extent to

which the client is exposed to risk
•  try to reduce the likelihood of occurrence
•  the use of a principled design methodology can serve to

systematically mitigate risk
•  in other words, the design methodology itself is built to

identify risks and to deal with them

•  One technique for risk mitigation
•  try to expose risks earlier rather than later
•  “early exposure”

13-­‐01-­‐10	

4	

13

The Iterative Methodology

Copyright © 2006 Pearson Education Canada Inc.

DEPLOY START

DESIGN

REQUIREMENTS TESTING

IMPLEMENTATION

EVALUATION

14

Specification vs Implementation
Analogy (simplified):

•  Houses are designed by architects and built by
carpenters (somewhat true)

•  If carpenters designed houses, they would certainly be
easier or more interesting to build, but not necessarily
better to live in.
•  example: position of light switches

•  There is a tension between the needs/wants of the
users and the needs/wants of the implementers

•  The tension is kept in balance by the separation of
design specification and implementation

ref: Alan Cooper, About Face, 1995

15

Specification vs Implementation
In software development:

•  Software is often designed by and built by the same
person/team

•  There is a tension between the needs/wants of the
users and the needs/wants of the implementers

•  The tension may not be kept in balance
•  desire to ease implementation may infiltrate the design

specification
•  who is advocating for the end user?

16

User-Centered Design
•  term coined by Donald

Norman (1980’s, The
Psychology of Everyday
Things, 1986)

•  puts the user in the
middle of the design
process

•  Three major
components:
•  Iterative design
•  Early focus on users

and tasks
•  Empirical measurement

