
2013-‐04-‐02	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 11, Class Meeting 30 (Lecture 21)

Winter 2013 Tuesday, March 26, 2013

2

Topics 

 exception handling – Chapter 11#

2

2013-‐04-‐02	

2	

3
Copyright ©
2006 Pearson
Education
Canada Inc.

 Java
By Abstraction

 11-3

11.3.1 The Hierarchy!

Th rowable

Object

Exception Error

RuntimeException VirtualMachineError

IOException AssertionError

PrinterException AWTError

... ...

4 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-4#

11.1.2 The Delegation Model!
• We, the client, delegate to method A !

• An invalid operation is encountered in A!

• A can either handle it or delegate it!
• If A handled it, no one would know!
• Not even the API of A would document this!
• Otherwise, the exception is delegated to us!

• We can either handle it or delegate it !
• If we handle it, need to use try-catch!

• Otherwise, we delegate to the VM!
• The VM’s way of handling exceptions is to cause a

runtime error.!

2013-‐04-‐02	

3	

5 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-5#

11.1.2 The Delegation Model!
• We, the client, delegate to method A !

• A delegates to method B!

• An invalid operation is encountered in B!
• B can either handle it or delegate it!

• If B handled it, no one would know!
• Not even the API of B would document this!
• Otherwise, the exception is delegated to A!

• A can either handle it or delegate it !

• If A handled it, no one would know; otherwise it
comes to us...!

• We can either handle it or delegate it!

6 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-6#

The Delegation Model Policy:!

Handle or Delegate Back!

Note:!
•  Applies to all (components and client)!
•  The API must document any back

delegation!

•  It does so under the heading: “Throws”!

2013-‐04-‐02	

4	

7 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-7#

Example: SubstringApp!
Given a string containing two slash-delimited
substrings, write a program that extracts and
outputs the two substrings.!

int slash = str.indexOf("/");  
String left = str.substring(0, slash);  
String right = str.substring(slash + 1);  
output.println("Left substring: " + left);  
output.println("Right substring: " + right);"

8 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-8#

Example, cont.!
Here is a sample run with str = “14-9”!
int slash = str.indexOf("/");  
String left = str.substring(0, slash);  
String right = str.substring(slash + 1);  
output.println("Left substring: " + left);  
output.println("Right substring: " + right);"

java.lang.IndexOutOfBoundsException:  
String index out of range: -1  
at java.lang.String.substring(String.java:1480)  
at Substring.main(Substring.java:14)"

The trace follows the delegation from line 1480 within
substring to line 14 within the client.!

2013-‐04-‐02	

5	

9 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-9#

Example, cont.!
Here is the API of substring:!

String substring(int beginIndex, int endIndex)  
Returns a new string that…"

Parameters:  
beginIndex - the beginning index, inclusive.  
endIndex - the ending index, exclusive. "

Returns:  
the specified substring. "

Throws:  
IndexOutOfBoundsException - if the beginIndex is negative, or
endIndex is larger than the length of this String object, or
beginIndex is larger than endIndex."

10
Copyright ©
2006 Pearson
Education
Canada Inc.

 Java
By Abstraction

 11-10

11.2.1 The basic try-catch!

try
{ ...
 code fragment
 ...
}
catch (SomeType e)
{ ...
 exception handler
 ...
}
program continues

2013-‐04-‐02	

6	

11 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-11#

Example!
Redo the last example with exception handling!

try  
{  
 int slash = str.indexOf("/");  
 String left = str.substring(0, slash);  
 String right = str.substring(slash + 1);  
 output.println("Left substring: " + left);  
 output.println("Right substring: " + right);  
}  
catch (IndexOutOfBoundsException e)  
{  
 output.println("No slash in input!");  
}  
output.println("Clean Exit."); // closing"

12
Copyright ©
2006 Pearson
Education
Canada Inc.

 Java
By Abstraction

 11-12

11.2.2 Multiple Exceptions!
 try

{ ...
}
catch (Type-1 e)
{ ...
}
catch (Type-2 e)
{ ...
}
...
catch (Type-n e)
{ ...
}
program continues

2013-‐04-‐02	

7	

13 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-13#

Example!
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.!

14 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-14#

Example!
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.!

Note that when exception handling is used, do
not code defensively; i.e. assume the world is
perfect and then worry about problems. This
separates the program logic from validation.!

2013-‐04-‐02	

8	

15 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-15#

Example, cont.!
try  
{  
 int slash = str.indexOf("/");  
 String left = str.substring(0, slash);  
 String right = str.substring(slash + 1);  
 int leftInt = Integer.parseInt(left);  
 int rightInt = Integer.parseInt(right);  
 int answer = leftInt / rightInt;  
 output.println("Quotient = " + answer);  
}  
catch (?)  
{  
 
}"

16
Copyright ©
2006 Pearson
Education
Canada Inc.

 Java
By Abstraction

 11-16

Example, cont.!
catch (IndexOutOfBoundsException e)
{
 output.println("No slash in input!");
}
catch (NumberFormatException e)
{
 output.println("Non-integer operands!");
}
catch (ArithmeticException e)
{
 output.println("Cannot divide by zero!");
}

output.println("Clean Exit."); // closing

2013-‐04-‐02	

9	

17
Copyright ©
2006 Pearson
Education
Canada Inc.

 Java
By Abstraction

 11-17

11.3.1 The Hierarchy!

Th rowable

Object

Exception Error

RuntimeException VirtualMachineError

IOException AssertionError

PrinterException AWTError

... ...

18 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-18#

11.3.2 OO Exception Handling!
•  They all inherit the features in Throwable!
•  Can create them like any other object: 

Exception e = new Exception();!
•  And can invoke methods on them, e.g. 

getMessage, printStackTrace, etc.!
•  They all have a toString!

•  Creating one does not simulate an exception. For
that, use the throw keyword: 
 

Exception e = new Exception("test"); 
throw e;!

2013-‐04-‐02	

10	

19 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-19#

Example!
Write an app that reads a string containing two
slash-delimited integers the first of which is
positive, and outputs their quotient using
exception handling. Allow the user to retry
indefinitely if an input is found invalid.!

As before but:!
•  What if the first integer is not positive?!
•  How do you allow retrying?!

20 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-20#

Example, cont.!
for (boolean stay = true; stay;)  
{  
 try  
 {  
 // as before  
 if (leftInt < 0) throw(??);  
 …  
 output.println("Quotient = " + answer);  
 stay = false;  
 }  
 // several catch blocks  
}"

2013-‐04-‐02	

11	

21
Copyright ©
2006 Pearson
Education
Canada Inc.

 Java
By Abstraction

 11-21

for (boolean stay = true; stay;)
{
 try
 {
 // as before
 if (leftInt < 0) throw(??);
 …
 output.println("Quotient = " + answer);
 stay = false;
 }
 // several catch blocks
}

Example, cont.

The order may be
important

E.g. Runtime-
Exception with a
message

22

11.3.3 Checked Exceptions  

•  In the Exception hierarchy, there is an important
distinction between #
•  the branch of RuntimeExceptions, and #

•  the other branches, such as IOException and
ClassNotFoundException!

•  the exceptions of type RuntimeException, in principle,
can be avoided through defensive programming#
•  such exceptions can be prevented from arising through careful

programming#

•  app programmers cannot be “forced” to handle such exceptions#

22

2013-‐04-‐02	

12	

23

11.3.3 Checked Exceptions  

•  Other exceptions such as IOException and
ClassNotFoundException, however, cannot be easily validated even in
principle!
•  how can the app realistically monitor, at all times, the state of resources

upon which it depends, such as network availability, media availability,
the file system, the functioning of the OS and the WM#

•  these conditions are, in essence, “un-validatable” (this is a made-up
word #

23

24

11.3.3 Checked Exceptions  

•  For “un-validatable” exceptions, the
compiler enforces the acknowledgement
rule. #

•  The “un-validatable” exceptions are
referred to as checked exceptions#

•  App programmers must acknowledge their existence#
•  The compiler ensures that the app either handles checked exceptions or

use “throws” in its main.#

24

2013-‐04-‐02	

13	

25 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-25#

Example!
Write a program that opens a File, given a
pathname, and then reads an object from that
file!
Hint: See L09App1 (reproduced as L12App01)!

26 #
Copyright ©
2006 Pearson
Education
Canada Inc.

#Java
By Abstraction

11-26#

11.4 Building Robust Applications!

•  Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged!

•  Unchecked exceptions (often caused by the end user)
must be avoided and/or trapped!

•  Defensive programming relies on validation to detect
invalid inputs!

•  Exception-based programming relies on exceptions!
•  Both approaches can be employed in the same app!

•  Logic errors are minimized through early exposure, e.g.
strong typing, assertion, etc.!

Key points to remember:!

