2013-04-02

CSE1720

Week 11, Class Meeting 30 (Lecture 21)

Winter 2013 4 Tuesday, March 26, 2013

UNIVERSITE
IIIIIIIIII

Topics

m exception handling — Chapter 11

3

4

Object
Throwable
Error Exception
5 A
VirtualMachineError [B RuntimeException
AssertionError || | IOException
AWTError | | PrinterException

Conbvriaht ©

, the client, delegate to method

«An invalid operation is encountered in

can either handle it or delegate it

If A handled it, no one would know

*‘Not even the API of

would document this

UNTVERSITE
IIIIIIIIII

-Otherwise, the exception is delegated to

* We can either handle it or delegate it

If we handle it, need to use try-catch

‘Otherwise, we delegate to the VM

- The VM’s way of handling exceptions is to ca

runtime error.
Conbvriaht ©

EEEEEEEEEE
uuuuuuuuuu

U

2013-04-02

2013-04-02

, the client, delegate to method
delegates to method
«An invalid operation is encountered in
can either handle it or delegate it

If © handled it, no one would know

‘Not even the API of @ would document this
-Otherwise, the exception is delegated to
can either handle it or delegate it

If A handled it, no one would know; otherwise it
comes to us...

; * We can either handle it or delegate it suversice
Coovriaht ©

Note:
- Applies to all (components and client)

- The APl must document any back
delegation

* It does so under the heading: “

UNIVERSITE

6 UNIVERSITY
Convriaht ©

int slash = str.indexO0f("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);

output.println("Left substring: " + left);
output.println("Right substring: " + right);

YORKJQ

UNIVERSITE
UNIVERSITY

Convriaht ©

int slash = str.indexO0f("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

String index out of range: -1
at java.lang.String.substring(String.java:1480)
at Substring.main(Substring.java:14)

The trace follows the delegation from line 1480 within
substring to line 14 within the client. VA

2|

.
-
4

Convriaht ©

2013-04-02

2013-04-02

String substring(int beginIndex, int endIndex)
Returns a new string that..

Parameters:
beginIndex - the beginning index, inclusive.
endIndex - the ending index, exclusive.

Returns:
the specified substring.

Throws:

- if the beginIndex is negative, or
endIndex is larger than the length of this String object, or
beginIndex is larger than endIndex.

YORKN
Convriaht © UN TV ERSTTY
try
{ ...
code fragment
}
catch (SomeType e)
{ ...
exception handler
}
program continues
YORKRJ
Cobovriaht © v s

2013-04-02

int slash = str.indexOf("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

output.println("No slash in input!");

output.println("Clean Exit."); // closing

Convriaht ©

try

{

}

catch (Type-1 e)
{

}

catch (Type-2 e)
{

}

éééch (Type-n e)
{
}

program continues

UNIVERSITE
VVVVVVVVVV

Cobovriaht ©

2013-04-02

Example

Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.

13 SNVt Rei Ty
Convriaht ©

Example

Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.

Note that when exception handling is used, do
not code defensively; I.e. assume the world is
perfect and then worry about problems. This
separates the program logic from validation.

IIIIIIIIII

14 UNITVERSITY
Conovriaht ©

2013-04-02

int slash = str.indexO0f("/");

String left = str.substring(0, slash);
String right = str.substring(slash + 1);
int leftInt = Integer.parselnt(left);
int rightInt = Integer.parselInt(right);
int answer = leftInt / rightlInt;

output.println("Quotient = + answer);

YORKJQ

UNIVERSITE
UNIVERSITY

Convriaht ©

output.println("No slash in input!");

output.println("Non-integer operands!") ;

output.println("Cannot divide by zero!");

output.println("Clean Exit."); // closing

UNIVERS '
UNIVERS

I TE
1Ty

Cobovriaht ©

Object
Throwable
Error Exception
5 A
VirtualMachineError [B RuntimeException
AssertionError || | IOException
AWTError | | PrinterException
RKEI
17 UN TV ERSTTY
Coovriaht ©

They all have a

They all inherit the features in

Can create them like any other object:

And can invoke methods on them, e.g.

, etc.

that, use the keyword:

18
Convriaht ©

Creating one does not simulate an exception. For

2013-04-02

Convriaht ©

// as before
if (leftInt < 0) throw(??);

output.println("Quotient =
stay = false;

Convriaht ©

+ answer);

YORK

UNIVERSITE
UNIVERSITY

YORK

c|le
z|z
<|<
m(m
|
vl
<Im

2013-04-02

10

// as before .
if (leftInt < 0) throk(??):

output.println("Quotient = " + answer);
stay = false;

Convriaht ©

* In the Exception hierarchy, there is an important
distinction between

« the branch of RuntimeExceptions, and

+ the other branches, such as I0Exception and
ClassNotFoundException

* the exceptions of type RuntimeException, in principle,
can be avoided through defensive programming

* such exceptions can be prevented from arising through careful
programming

 app programmers cannot be “forced” to handle such exceptions

2013-04-02

11

Other exceptions such as I0Exception and
ClassNotFoundException, however, cannot be easily validated even in

principle
how can the app realistically monitor, at all times, the state of resources

upon which it depends, such as network availability, media availability,
the file system, the functioning of the OS and the WM

these conditions are, in essence, “un-validatable” (this is a made-up
word ©

23

- For “un-validatable” exceptions, the
compiler enforces the acknowledgement

rule.

- The “un-validatable” exceptions are

referred to as exceptions
« App programmers must their existence
+ The compiler ensures that the app either handles checked exceptions or
use “ ”in its main.
YORK
24 HReRR

24

2013-04-02

12

2013-04-02

25 NIV ER STy
Convriaht ©

- Thanks to the compiler, exceptions are never
"unexpected"; they are trapped or acknowledged

exceptions (often caused by the end user)
must be avoided and/or trapped

relies on validation to detect
invalid inputs

relies on exceptions
- Both approaches can be employed in the same app

- Logic errors are minimized through early exposure, e.g.
strong typing, assertion, etc. YORKR |

26 TNV E RS Ty
Convriaht ©

13

