
2013-‐03-‐19	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 11, Class Meeting 28 (Lecture 19)

Winter 2013 Tuesday, March 19, 2013

2

9.2.1 The Substitutability Principle
“When a parent is expected, a child is accepted”

the “who”

Q: Is this principle employed by:
(i) the compiler,
(ii) the virtual machine,
(iii) both the compiler and the virtual machine?

A:

(i)

NOT (ii), (iii)

2013-‐03-‐19	

2	

3

9.2.1 The Substitutability Principle
“When a parent is expected, a child is accepted”

Q: In which contexts is this principle applied?
A: in any context in which type matching is required
Compiler uses it:
•  Assignment statements (LHR / RHS)
•  Parameter passing
•  Exception clause matching (Ch 11)

4

Eg: Substitutability and Assignment Statement

// from the top of the class body of SpriteDataModel, where the
variables are defined, here is the declaration

ShooterSprite theShooter;

…

// from farther down in the class body of SpriteDataModel, in the
body of the constructor, here is the assignment statement

theShooter = new FroggyShooter(dimensionAvailable);

// In this assignment statement, the substitutability principle has been
applied

//What if we were to declare theShooter to be of type Sprite
instead? Is substitutability principle still applied? what goes wrong?

Try it!!

2013-‐03-‐19	

3	

5

Eg: Substitutability and Parameter Passing

// from the body of the constructor SpriteDataModel	
theSprites.add(theShooter);

theSprites.add(theTarget);

theSprites.add(theScore);

	
// what is the method signature for “add”?

// what is the required type of the method’s parameter?

// signature is add(Sprite)

// passed values are ShooterSprite, TargetSprite,ScoreTally
Sprite.

6

Binding
How would the following be bound:

theShooter.setInitialLocation();

More fundamental question: what is binding?

2013-‐03-‐19	

4	

7

Binding
•  Binding refers to the process of resolving an the identifiers

in a java statement"

•  resolve ≊ locate the referent of an identifier"
•  identifier are used for variables, methods or class

names !
•  the referent means “the thing that the identifier stands

for”"
•  the referent of a variable is its value (a reference to an object)"
•  the referent of a class name is a class definition (the class

body)"
•  the referent of a method signature is a method body (the

method name alone is insufficient, need the parameters too)"

8

Early Binding
consider the case of the statement  
r.m();!

•  the compiler needs to resolve this expression:"
1.  compiler determines: what is the declared type of r? this is the

referent class definition"
2.  compiler determines: what is the signature of the method that

is being invoked? "
3.  compiler needs to: find the signature in the referent class

definition. It looks for the match that has:"
•  the same method name"
•  the same number of parameters?"
•  parameters of the same type or higher in the hierarchy"

•  if multiple target methods found, it chooses the method that
requires the least amount of promotion!

generate bytecode; stipulate the signature in the bytecode!

sec 3.1.3,
sec 9.2.2

2013-‐03-‐19	

5	

9

Late Binding
consider the bytecode corresponding to the statement: 
r.m(…)!

at runtime, the VM needs to resolve this expression:"
1.  VM determines: what is the class type of the object to which r

refers? "
•  this is the referent class; it might not be the same as runtime!!!!

2.  VM determines: what does the bytecode say is the signature of
the invoked method? "
•  this was already determined at compilation time, according to the

declared type of r
3.  VM needs to: find the signature from step #2 in the referent

class definition"
•  the VM will always find a matching method!
•  the compiler’s early binding ensures that at least one matching method can

always be found (that of the parent class)"
•  VM needs to resolve parameters and pass them to the  

matching method"

sec 9.2.2

10

How would the following be bound?

theShooter.setInitialLocation();

Early Binding

1.  What is the declared type of theShooter?
•  It is: _______________

2.  The compiler searches that class definition for
setInitialLocation()

3.  Outcome?
•  If one matching class definition is found, great. compiler

produces bytecode
•  If more than one found, compiler picks the most specific
•  If not found, compiler issues compile-time error

2013-‐03-‐19	

6	

11

How would the following be bound?

theShooter.setInitialLocation();
Late Binding

1.  What is the actual runtime type of theShooter?
•  It is: ____________________
•  NOTICE!!!! The runtime type of the object that is referenced

by theShooter is different than the declared type
•  If theShooter is null, then VM throws

RuntimeException: NullPointerException

2.  The VM searches that class definition for
setInitialLocation()

3.  Possible outcomes?

12

Discussion
theShooter.setInitialLocation();

Early Binding

The compiler searched this class definition:______________

Late Binding

The VM searched this class definition:______________

Since the class searched by the VM is different than the
class searched by the compiler, is it possible that the method
setInitialLocation() will not be found?

2013-‐03-‐19	

7	

13

Early Binding (Compiler)!
 what is the declared type of r?  

(class ShooterSprite) 
 
"

 what is the signature of the
invoked method?  
 
!

 Compiler locates the target
signature in ShooterSprite"
  if multiple targets methods

found, choose the method
that requires the least
amount of promotion"

generate bytecode, stipulate the
signature in the bytecode!

Late Binding (VM)!
 what is the runtime type of the

the object to which r refers?  
(class FroggyShooter) 
"

 what is the signature of the
invoked method?  
(look in bytecode)  
"

  VM locates the target
signature in FroggyShooter

13

theShooter.setInitialLocation();

this step
could

even be
done
first!

14

Polymorphism
Which of the following statements are consistent with
the meaning of polymorphism?

1.  The object is polymorphic.

2.  The class definition is polymophic.

3.  The method is polymorphic.

Ans: Only#3 is consistent; #1 and #2 are
inconsistent

2013-‐03-‐19	

8	

15

Polymorphism
TAKE AWAY POINT:

Polymorphism is a property that can be found in
methods – NOT objects, NOT classes

A method can be polymorphic if it is capable of having
multiple forms.

– E.g., one form defined in a parent class, another form
defined in a child class

The form is able to change during late binding, when the
actual object type (during runtime) is different from the
declared type

16

Exercise
Identify polymorphic methods in the game code base

Hints:

•  look for variables which have a declared type that is not
exactly the same as the runtime type

•  for these variables, examine the methods that are being
invoked; look here to see whether these are polymorphic

2013-‐03-‐19	

9	

17

What is the point of polymorphism?
•  allows applications to have elegant designs

•  elegant in the mathematical sense: “pleasingly ingenious
and simple”, not the everyday sense of the word

•  applications don’t need to use selection (if statements) to
conditionally invoked methods – rather, the runtime type
determines which methods get invoked.

Sometimes non-polymorphic methods must be used.

For instance,

isAlive() and move() are methods that apply only to
ProjectileSprites

to use them, we use a manual cast

18

Methods that are NOT polymorphic?
Sometimes non-polymorphic methods must be used. For
instance,

isAlive() and move() are methods that apply only to
ProjectileSprites

2013-‐03-‐19	

10	

19

Methods that are NOT polymorphic?
Use the relational operator instanceof

for (Sprite s : getSprites()) {

 if (s instanceof ProjectileSprite) {

 ProjectileSprite ps = (ProjectileSprite) s;

 ps.move();

 }

}

