
2013-­‐02-­‐27	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 08, Class Meeting 19 (Lecture 16)

Winter 2013  Tuesday, Feb 25, 2013

2

In General…
•  Welcome back from reading week!

•  Hopefully you found some rest…
•  … and also had a chance to do some solid coursework so

you can finish the term in a strong way.

•  Course reading schedule:
•  deadline for reading Chapter 10 is Feb 26th (today)

•  Next lab test:
•  Thursday Feb 28; Friday Mar 01
•  Topic: adding the functionality as specified in Week 06

lab exercises

2013-­‐02-­‐27	

2	

3

In General…
•  Check-in for course work

•  Lab test: marking in progress
•  Term test: marking in progress
•  Week 05 Lab Exercises: 5 students did not submit at all
•  Week 06 In-class Exercises:

4

Goals for today’s class meeting
•  Questions about week 06 lab exercise?

•  adding movement to game shooter

•  Discussion of different game functionalities
•  and the data structures to support them!!!

2013-­‐02-­‐27	

3	

5

Motivation

•  You need to understand the collection framework in
order to implement and to analyze any type of non-trivial
application.

•  The collection framework is specific to Java, but it
relates to a more general concept in computer science.
•  Abstract data type (ADT) : mathematical models for

certain types of data structures, used in order to describe
and analyze abstract algorithms.

•  The collection framework is just Java’s implementation
of certain ADTs.

6

About Abstract Data Types…
•  Examples of ADTs:

•  Collection*, Deque, List*, Map*, Queue, Set*, Stack, Tree,
… (among others)

•  *indicates an ADT implemented in the Java platform
throught the Collections Framework

•  an ADT is described solely in terms of:
•  the operations that may be performed on it (sound familiar?)
•  the mathematical constraints on the effects of the operations

(e.g., insertion should require additional memory, etc)

•  Most programming language provide implementations for
most or all of the ADTs;
if not, you need to write them!

2013-­‐02-­‐27	

4	

7

Java SE Documentation for the Collections Framework

http://docs.oracle.com/javase/6/docs/technotes/guides/collections/index.html

8

Chapter 10

•  Provocation:
is a variable considered to be a data structure?

2013-­‐02-­‐27	

5	

9

Recap and Discussion
•  We will discuss and distinguish among:

•  When should a set be used?
•  When should a list be used?
•  When should a collection be used?
•  When should a map be used?

We will distinguish between “use of services” for the
purposes of declaration vs for the purposes of instantiation

10

The Set<E> Interface

2013-­‐02-­‐27	

6	

11

The Set<E> Interface
•  The interface is Set<E>!
•  Implementing classes are HashSet<E> and
TreeSet<E>!

Set<String> s = new HashSet<String>();!

Set<String> s = new TreeSet<String>();!

Declaration Instantiation

12

The Set<E> Interface
•  The Set interface is “generic”, which is indicated by the

< and > in the interface name."
•  If you want to use the Set interface or the HashSet or

TreeSet classes, you need to specify the type of the
elements by writing it between < and >"

•  By doing this, the client ensures:"
•  No rogue element can be inserted"
•  No casting is needed upon retrieval"

2013-­‐02-­‐27	

7	

13

HashSet<E> vs TreeSet<E>
Suppose your set contains 128 elements, (log2 128=7)!

•  If you use a HashSet<E>, then"
•  it will take 1 step to add an additional element"
•  it will take 1 step to remove an element"
•  it will take 1 step to test whether a given element is

found within the set "

•  If you use a TreeSet<E>, then:"
•  it will take 7 steps to add an additional element "
•  it will take 7 steps to remove an additional element"
•  it will take 7 steps to test whether a given element is

found within the set"

14

HashSet<E> vs TreeSet<E>
•  If you use a HashSet<E>, then"

•  the iterator will provide the elements in some sort of order
that may or may not be sorted"

•  If you use a TreeSet<E>, then:"
•  the iterator will provide the elements in a sorted order"

but wait – didn’t we say that sets are not sorted?!
Yes, that’s correct. The API doesn’t require this, it just
happens to be a kind of “bonus” of the TreeSet
implementation!

2013-­‐02-­‐27	

8	

15

Pros and Cons…
Version #1"
HashSet<String> s = new HashSet<String>();!

TreeSet<String> s = new TreeSet<String>();!

!

Version #2"
Set<String> s = new HashSet<String>();!

Set<String> s = new TreeSet<String>();!

!

Discuss implication of versions #1 and #2"

16

Best Practises"

•  Declaration as high up the hierarchy as possible"
•  Instantiation lower in the hierarchy"

2013-­‐02-­‐27	

9	

17

The List<E> Interface

18

ArrayList<E> vs LinkedList<E>

Suppose your list contains 128 elements (log2 128=7)!

•  If you use a ArrayList<E>, then"
•  it will take 1 step to get an element"
•  it may take up to 128 steps to add an additional element"
•  it will take 128 steps to remove an element"

•  If you use a LinkedList<E>, then:"
•  it will take 128 steps to get an element"
•  it will take 1 step to add an additional element "
•  it will take 7 steps to remove an additional element"

LinkedList<E> is better if you need to add or remove
elements"

2013-­‐02-­‐27	

10	

19

Discussion about Maps
•  A Map is a kind of generalized collection

•  Sets – the elements are objects
•  all elements are unique (no duplicates)
•  elements are not ordered in any way

•  Lists – the elements are objects
•  albeit with possible duplicates
•  elements have an ordered defined

•  Map – the elements are pairs of objects
•  each pair consists of a key and a value
•  keys must be unique

20

Discussion about Maps
•  a pair has two elements: the key and the value

•  a dictionary is an example of a map
•  a dictionary consists of a list of pairs
•  the keys are sorted in lexicographic order

the key

the value

2013-­‐02-­‐27	

11	

21

Discussion about Maps
•  When declaring a map, we need to specify:

•  the type of the keys
•  the type of the values

!

Map<String, String> theDictionary;!

Map<String, Integer> theTally;!

22

Discussion about Maps
•  The basic operations"

•  put a pair into the Map"
•  remove a pair"
•  given a key, get its corresponding value "
•  iterate over the keys!
•  iterate over the values!

