2013-02-27

CSE1720

Week 08, Class Meeting 19 (Lecture 16)

Winter 2013 4 Tuesday, Feb 25, 2013

UNIVERSITE
IIIIIIIIII

In General...

« Welcome back from reading week!
» Hopefully you found some rest...

e ... and also had a chance to do some solid coursework so
you can finish the term in a strong way.

« Course reading schedule:
« deadline for reading Chapter 10 is Feb 26™" (today)

* Next lab test:
* Thursday Feb 28; Friday Mar 01

» Topic: adding the functionality as specified in Week 06
lab exercises

IIIIIIIIII
IIIIIIIIII

2013-02-27

In General...

» Check-in for course work
* Lab test: marking in progress

« Term test: marking in progress
 Week 05 Lab Exercises: 5 students did not submit at all

« Week 06 In-class Exercises:

UNIVERSITE
IIIIIIIIII

Goals for today’s class meeting

* Questions about week 06 lab exercise?
* adding movement to game shooter

» Discussion of different game functionalities
» and the data structures to support them!!!

IIIIIIIIII
IIIIIIIIII

Motivation

* You need to understand the collection framework in
order to implement and to analyze any type of non-trivial
application.

» The collection framework is specific to Java, but it
relates to a more general concept in computer science.

» Abstract data type (ADT) : mathematical models for
certain types of data structures, used in order to describe
and analyze abstract algorithms.

« The collection framework is just Java’s implementation
of certain ADTs.

UNIVERSITE

About Abstract Data Types...

« Examples of ADTs:
» Collection®, Deque, List*, Map*, Queue, Set*, Stack, Tree,
... (@among others)

* *indicates an ADT implemented in the Java platform
throught the Collections Framework

« an ADT is described solely in terms of:
» the operations that may be performed on it (sound familiar?)

the mathematical constraints on the effects of the operations
(e.g., insertion should require additional memory, etc)

« Most programming language provide implementations for
most or all of the ADTs;
if not, you need to write them!

IIIIIIIIII

2013-02-27

Java SE Documentation for the Collections Framework

http://docs.oracle.com/javase/6/docs/technotes/quides/collections/index.html

e 06 JDK 6 C i lated APIs & D Guides S
(1\) > @ docs.oracle.com| javase/6/docs/technotes/guides/ collections/index.html 77 v & J(B~ Google Q)
=

ORACLE" Java SE Documentation

l Oracle Technology Network Software Downloads Documentation Search

The Collections Framework B e %A

The i is a unified i for ing and i i i allowing them to be manipulated independently of the details of their

It reduces p ing effort while i i 1ce. It allows for i ility among APIs, reduces effort in designing and learning
new APls, and fosters software reuse. The framework is based on fourteen collection interfaces. It includes implementations of these interfaces, and algorithms to
manipulate them.

Overview

« Overview - An overview of the Collections framework.

API Specification
+ API Reference - An annotated outline of the classes and interfaces comprising the collections framework, with links into the JavaDoc.

Tutorials and Programmer's Guides

« Tutorial - A tutorial i ion to the { with plenty of programming examples.
API Enhancements

« APl Enhancements in Java SE 6 - An annotated list of AP| changes between the 5.0 and 6 releases.
+ API Enhancements in J2SE 5.0 - An annotated list of API changes between the 1.4 and 5.0 releases.
+ API Enhancements in J2SDK 1.4 - An annotated list of AP| changes between the 1.3 and 1.4 releases.

More Information

e st " YORKJ
7 UNIVERSITY
Chapter 10
 Provocation:
is a variable considered to be a data structure?
YORKE
8 UNITVERSITY

2013-02-27

10

Recap and Discussion

« We will discuss and distinguish among:
 When should a set be used?
* When should a list be used?
» When should a collection be used?
* When should a map be used?

We will distinguish between “use of services” for the
purposes of declaration vs for the purposes of instantiation

UNIVERSITE
IIIIIIIIII

The Set<E> Interface

| <<interface>> —<interfacess

+add(E) - e orator<es

g <— +hasNext() : boolean
+remove(E) : boolean +next() : E
+iterator() : lterator<E> .
+contains(E) : boolean

HashSet<E> ‘ TreeSet<E>
S — 1—
YORKRI

IIIIIIIIII

2013-02-27

1"

12

The Set<E> Interface

« The interface is Set<E>

* Implementing classes are HashSet<E> and
TreeSet<E>

Set<String> s = new HashSet<String>();

Set<String> s = new TreeSet<String>();
Declaration Instantiation
YORK

UNIVERSITE
IIIIIIIIII

The Set<E> Interface

« The Set interface is “generic”, which is indicated by the
and > in the interface name.

 |If you want to use the Set interface or the HashSet or
TreeSet classes, you need to specify the type of the
elements by writing it between < and

« By doing this, the client ensures:
* No rogue element can be inserted
* No casting is needed upon retrieval

IIIIIIIIII
IIIIIIIIII

2013-02-27

HashSet<E>vs TreeSet<E>

Suppose your set contains 128 elements, (log, 128=7)

* |f you use aHashSet<E>, then
it will take 1 step to add an additional element
it will take 1 step to remove an element

« it will take 1 step to test whether a given element is
found within the set

* |fyouuse aTreeSet<E>, then:
it will take 7 steps to add an additional element
it will take 7 steps to remove an additional element

it will take 7 steps to test whether a given element is
found within the set

UNIVERSITE

13 UNIVERSITY

HashSet<E>vs TreeSet<E>

* |f you use a HashSet<E>, then

 the iterator will provide the elements in some sort of order
that may or may not be sorted

* Ifyouuse aTreeSet<E>, then:
 the iterator will provide the elements in a sorted order

but wait — didn’t we say that sets are not sorted?

Yes, that'’s correct. The API doesn’t require this, it just
happens to be a kind of “bonus” of the TreeSet
implementation

IIIIIIIIII

14 UNIVERSITY

2013-02-27

15

16

Pros and Cons.

Version #1
HashSet<String> s =

TreeSet<String>

0
I

Version #2
Set<String> s = new

Set<String> s = new

new HashSet<String>();

new TreeSet<String>();

HashSet<String>();

TreeSet<String>();

Discuss implication of versions #1 and #2

Best Practises

UNIVERSITE
IIIIIIIIII

» Declaration as high up the hierarchy as possible

 Instantiation lower in the hierarchy

IIIIIIIIII
IIIIIIIIII

2013-02-27

17

18

<<interface>>
List<E>

The List<E> Interface

+add(E) : boolean
+remove(E) : boolean
+iterator() : lterator<E>
+contains(E) : boolean

<<interface>>
Iterator<E>

+get(int) : E
ArrayList<E> LinkedList<E>
T — T —"

+hasNext() : boolean
+next() : E

UNIVERSITE
IIIIIIIIII

ArrayList<E>vs LinkedList<E>

Suppose your list contains 128 elements (log, 128=7)
* Ifyouuse aArraylList<E>, then
it will take 1 step to get an element
* it may take up to 128 steps to add an additional element
it will take 128 steps to remove an element
« Ifyouuse alinkedList<E>, then:
it will take 128 steps to get an element
it will take 1 step to add an additional element
it will take 7 steps to remove an additional element

LinkedList<E> is better if you need to add or remove

IIIIIIIIII

2013-02-27

Discussion about Maps

« A Map is a kind of generalized collection

» Sets — the elements are objects
 all elements are unique (no duplicates)
» elements are not ordered in any way

» Lists — the elements are objects
 albeit with possible duplicates
« elements have an ordered defined

* Map — the elements are pairs of objects
» each pair consists of a key and a value
* keys must be unique

UNIVERSITE

19 UNIVERSITY

Discussion about Maps

* a pair has two elements: the key and the value

« adictionary is an example of a map
» adictionary consists of a list of pairs
» the keys are sorted in lexicographic order

the key

noun
a large extinct wolf of the Pleistocene epoch that preyed on large mammals.

the value

IIIIIIIIII

20 UNITVERSITY

2013-02-27

10

21

22

Discussion about Maps

» When declaring a map, we need to specify:
» the type of the keys
» the type of the values

Map<String, String> theDictionary;
Map<String, Integer> theTally;

UNIVERSITE
IIIIIIIIII

Discussion about Maps

« The basic operations
* put a pair into the Map
* remove a pair
* given a key, get its corresponding value
* iterate over the keys

* iterate over the values

IIIIIIIIII
IIIIIIIIII

2013-02-27

11

