
2013-‐01-‐29	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 04, Class Meeting 10 (Lecture 07)

Winter 2013 Tuesday, January 29, 2013

2

This lecture will be using code from the following package
to illustrate concepts:

game_Lect07Version

2013-‐01-‐29	

2	

3

Objectives for this class meeting
•  Consider the following question “How do I get the game

shooter to shoot?”
•  We will discuss the answer to this

•  in terms of design specification
•  in terms of implementation

•  Pose and answer conceptual questions about the
interactive aspects of the game

4

Big picture recap…
•  So far:

•  our app asked the window manager for a window
•  via the services of the Frame class

•  we created and placed a component inside this window
•  this is the GameCanvas object

•  we used the services of this component to implement
drawing
•  via the component’s services that encapsulate the

Graphics2D object

•  This component and the window manager coordinate in
order to do the drawing

2013-‐01-‐29	

3	

5

About shooting…
•  Shooting is a basic behaviour that is a defining

characteristic of shooter games

•  We can employ encapsulation:
•  encapsulate the shooter
•  encapsulate the projectile

•  Shooting entails:
•  waiting for user input
•  rendering the trajectory over a sequence of frames

6

About the trajectory…
•  We need functionality to implement repeated frame

drawing

•  the speed at which frames are draw is called the
frame rate
•  TV: 60 fps
•  Movies: 24 fps
•  The Hobbit 3D experiment: 48 fps
•  Threshold of human perception: 10-12 fps

•  Side note about a key concept: suspension of disbelief
•  humans will suspend judgment about the implausibility of a

narrative in certain conditions, but not others
•  characteristics of the medium can trigger this

2013-‐01-‐29	

4	

7

How we implement frames
•  We need functionality to implement repeated frame

drawing
•  we instantiate a Timer object
•  this launches a new thread
•  the thread fires events at the specified interval
•  what does this mean?

•  we need to talk about the observer pattern
•  we’ll come back to this

FrameAdvancer frameAdvancer = new FrameAdvancer(theCanvas);
Timer frameAdvancerTimer = new Timer(msecPerFrame, frameAdvancer);
frameAdvancerTimer.start();

8

Shooting requires interactivity
•  This component and the window manager coordinate in

order to do the drawing

•  This component and the window manager also
coordinate in order to handle user input

•  This component is also an on-screen object with which
the user can interact
•  click on the canvas with the mouse
•  press keyboard keys

•  These happening are first handled by the window
manager…

2013-‐01-‐29	

5	

9

The WM and user input
•  When something like a mouse click happens, the WM

causes the following to happen:
•  instantiates an event object
•  the object encapsulates the source of the event, some

info about when the event happened, and some other
details

•  “dispatches” this event

What is meant by dispatching the event?

10

The Radio Analogy…
•  Think of it this way…

•  The WM is like a broadcast radio conglomerate
•  It has a whole bunch of radio stations
•  It is broadcasting content over all of its stations
•  It is organized

•  certain content goes over certain stations
•  instead of a continuous radio signal, the content

is packaged up in discrete objects called events

2013-‐01-‐29	

6	

11

What does an app do?
•  As a default, NOTHING.
•  Your app is like a radio

•  By default, it is turned on, but not tuned to any
station

•  Since it is not tuned to anything, your radio is
silent

•  To listen to a station, you need to tune your
radio to a station

•  The radio analogy has some complications:
•  your radio can also broadcast content
•  your radio can be tuned to several channels at

once!

12

How to “tune your radio”…
1. Identify the observee component

•  this is the component that is dispatching events
that you care about

2. Create an observer component
•  this will be a component that is capable of

“listening” to those types of events
•  this is like “tuning” to the station

3. Use the services of the observee to tell it
that it has an observer

2013-‐01-‐29	

7	

13

Concrete example
1.  The GameCanvas is the component that we

want to observe
-  it is the observee component; it dispatches events

2. Create an observer component
•  this is the GameObserver component
•  it encapsulates a KeyListener

3. Use the services of the observee to tell it
that it has an observer:

theCanvas.addKeyListener(observer);

14

About Events in General…

•  Events are objects that encapsulate some sort
of external “happening”
•  the user did something

•  e.g., performed a mouse or keyboard action
•  the window manager did something

•  e.g., opened a window, shifted focus

2013-‐01-‐29	

8	

15

Java’s Event Class Hierarchy

EventObject

AWTEvent

ActionEvent ComponentEvent

InputEvent WindowEvent

MouseEvent KeyEvent

A subset of Java’s Event Class
Hierarchy is shown here	

	

See Java API for full hierarchy	

16

Back to the Timer object…

•  Can you identify the observer and the
observee?

2013-‐01-‐29	

9	

17

Tasks

•  slow down the projectile to have a slower
trajectory"

•  make the projectile expire before it reaches the
edge of the screen"

•  change the interface so that the ‘f’ key fires the
shooter instead of the space bar"

