
13-‐01-‐17	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 02, Class Meeting 05 (Lecture 04)

Winter 2013 Thursday, January 17, 2013

2

Objectives for this class meeting
•  Conduct vote on basic style of game for class project

•  this vote only determines the gist of the game; many
aspect of the game we will refine and decide at
subsequent steps

•  Cover basic information on 2D Graphics
•  we will need this for designing our game

13-‐01-‐17	

2	

3

Voting on the game
•  you will each receive a ballot by email

•  submit the ballot as follows

submit 1720 Vote ballot.txt

4

Basic Graphics
•  Suggested background reading:

The Java Tutorials, Trail: 2D Graphics

•  http://docs.oracle.com/javase/tutorial/2d/index.html

•  These lecture slides provide a basic overview of that
material, enough to get you started with the lab
exercises

13-‐01-‐17	

3	

5

The Big Picture

•  apps that use graphics must work with the
Window Manager (WM)!
•  the WM is part of any operating system (OS) that

uses a desktop metaphor"
•  the app requests a window from the window

manager"
•  the window manager ultimately decides whether a

window is shown "
•  user may minimize, overlap, maximize the windows on the

desktop"
•  the window manager tells the app what its screen real

estate is at a given point in time"

6

The Big Picture

•  if you want your app to draw some graphics,
then you need to understand the following: 
 
There is a separation of concerns at work here!
The app doesn’t do the drawing. The app
specifies what should be drawn (the WHAT),
and then the WM/OS actually does the drawing
(the HOW)"

•  As the app developer, you need to understand
this separation"

13-‐01-‐17	

4	

7

Graphics2D class services
•  the Graphics2D object encapsulates the “HOW” part of

the drawing"

•  the complexity of the “HOW” is hidden from the clients"
•  how to translate drawing coordinates to screen

coordinates "
•  which pixels need to be modified and how"
•  all of the low level stuff that concerns graphics rendering

8

Graphics2D class services
•  an app that has a window will be able to access the
Graphics2D object that is associated with the window"
•  console based apps cannot get access to a Graphics2D

object – there is no window!!

•  The client (the app) uses the Graphics2D object to
specify the “WHAT” --- a description of which graphic
primitives are desired. The Graphics2D object, as part
of its services, deals with getting those primitive
rendered as computer graphics."

•  2D Graphic primitives include: basic geometric shapes,
lines, arcs, text"

13-‐01-‐17	

5	

9

Graphics2D class services
•  The client uses the methods of Graphics2D to specify

the graphic primitives to be drawn
•  a useful method is called draw
•  it takes one argument, a Shape
•  all of the graphic primitives can be provided, since Shape

is the parent class

•  The manner in which these primitives are rendered
depends on the current values of several properties
of the Graphics2D object.

•  By manner – we are talking about aspects such as the
width and color of the lines."

10

Graphics2D class services
•  The client specifies the graphic primitives to be drawn in

user space (in “coordinate units”)

•  Graphics2D class services translates the coordinates
in user space to coordinates in device space (in pixels) "

•  Depending on the screen resolution, one point in user
space may translate to several pixels in device space"

•  Your app can invoke the following to determine the
screen resolution in dots per inch:
Toolkit.getDefaultToolkit().getScreenResolution()

13-‐01-‐17	

6	

11

Coordinate spaces
•  From: http://docs.oracle.com/javase/tutorial/2d/overview/

coordinate.html"

•  The Java 2D API maintains two coordinate spaces:"
•  User space – The space in which graphics primitives are specified"
•  Device space – The coordinate system of an output device such as a

screen, window, or a printer"

•  User space is:"
•  a device-independent logical coordinate system. "
•  the coordinate space that your program uses. "

•  All geometries passed into Java 2D rendering routines are specified
in user-space coordinates."

•  When it is time to render the graphics, a transformation is applied to
convert from user space to device space. The origin of user space
is the upper-left corner of the component’s drawing area."

12

Examples
Construct a graphic primitive and draw it

Rectangle2D.Double shape1 = !

! !new Rectangle2D.Double(5, 15, 20, 50);!

20 units wide and 50 units high, as given in “coordinate
units”. The upper left hand corner is anchored at (5,15)

If your screen resolution is 72, then there will be 72
“coordinate units” per inch. But this can vary.

The name of the class is weird – there is a dot in the
middle of it. Nevermind this for the moment!

13-‐01-‐17	

7	

13

Examples
Now, the weirdly-named class is a sub-class of the class
Rectangle2D

So we can do this:
Rectangle2D shape1 = !

! !new Rectangle2D.Double(5, 15, 20, 50);

…And also the class Rectangle2D is a subclass of
Shape

So we can do this:
Shape shape1 = !

! !new Rectangle2D.Double(5, 15, 20, 50);!

14

Examples
We haven’t drawn anything yet!
We need to tell the Graphics2D object that we want
shape1 to be drawn.
So we do this to obtain a reference to the Graphics2D
object:
Graphics2D graphicsObj = myPict.getGraphics();

(Assuming here that myPict is a Picture object)

And then we tell the graphics2D object that we want
shape1 drawn:

graphicsObj.draw(shape1);!

13-‐01-‐17	

8	

15

Examples
The rectangle is drawn with the current settings of the
Graphics2D object.

To change the colour of the “pen” (so to speak)
!

graphicsObj.setColor(Color.BLUE);  
graphicsObj.draw(shape1);  
graphicsObj.setColor(Color.RED);  
graphicsObj.draw(shape1);!

This draws a red rectangle on top of the blue rectangle

Any shape that is drawn is drawn with the current settings
until the settings change

16

Examples
Note that there is no way to “move” rectangle.
•  You can move the origin of the coordinate system up/

down or left/right
•  this will make it appear as though the anchor of the

rectange has moved
•  this is not recommended at this point, since we want a

fixed origin
•  Instead, just instantiate new shapes with different

anchor points

13-‐01-‐17	

9	

17

Examples
Instead of drawing the outline of a shape, we can draw it
as a filled shape
!

graphicsObj.setColor(Color.BLUE);!

graphicsObj.fill(shape1);!

18

About transformations
Once a shape is specified in user space, then any number
of transformations can be applied to it

For instance, here is a shear transformation of a rectangle

There are also transformations to rotate and scale.

13-‐01-‐17	

10	

19

About “State”
•  There are settings for several aspects of drawing:"

•  The stroke width, the way the strokes are joined together, the
appearance of the ends of lines"

•  The current translation, rotation, scaling, and shearing values"
•  The paint color"
•  The fill pattern"

•  Since these aspects are controlled by attribute values,
we say that the state of the Graphics2D object
determines the drawing settings."

20

Shape Primitives"

20"

13-‐01-‐17	

11	

21

Shape Primitives"

21"

ref: http://java.sun.com/developer/technicalArticles/GUI/java2d/java2dpart1.html

22

About Stroke
•  Stroke controls the width of the drawing pen

•  The default width is 1 unit (typically 1 pixel wide, so it is
teeny-tiny)

•  Here’s how to change it:

BasicStroke newStroke = new BasicStroke(4.0);!

graphicsObj.setStroke(newStroke);!

!

Since Stroke is the parent class of BasicStroke, you
can also write:

Stroke newStroke = new BasicStroke(4.0);!

graphicsObj.setStroke(newStroke);!

13-‐01-‐17	

12	

23

About Colour
•  Paint controls the colour of the drawing pen

•  The default width is WHITE

•  Here’s how to change it (older version):

graphicsObj.setColor(Color.BLUE);!

!

•  Here’s how to change it (newer, better version):
!

graphicsObj.setPaint(Color.BLUE);!

!

the setPaint method takes a Paint argument, and a
Color object can fit the bill!

24

Here is a fancier fill
Point p1 = new Point(0, 0);  
Point p2 = new Point(50, 50);  
GradientPaint paint1 =  

!new GradientPaint(p1, Color.RED, p2, Color.MAGENTA,
true);  
graphicsObj.setPaint(paint1);!

Try it yourself!

13-‐01-‐17	

13	

25

To Do:
•  Practise using all of these various methods and

experiment on your own.

•  Complete the lab exercises

