
2013-‐02-‐14	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 06, Class Meeting 18 (Lab 06)

Winter 2013
Thursday, Feb 14, 2013 & Friday, Feb 15, 2013

2

Week 06 Lab Exercise
•  Due Date: n/a

•  Course Weight: n/a

•  Topic: Adding movement to your game shooter

Once you have completed the exercises, your code base
will be updated and ready for the next step of game
development

2013-‐02-‐14	

2	

3

Setup

Download v.2 of the class ShooterSprite from the course website
(lab sub-page)

It implements the positioning of the sprite in an improved way.

4

Exercise #1: Setting up a testing stub

Create a new class. Call it Lab06Tester and create it with a main
method.

In the main method:

•  declare and instantiate a Dimension object (in the same way that
is done in GameDriver)

•  declare and instantiate a ShooterSprite object (in the same way
that is done in GameCanvas)

•  mutate the ShooterSprite‘s anchor (in the same way that is
done in GameCanvas)

•  before and after the method invocation that changes the anchor
position of the shooter sprite, print out to the console the
ShooterSprite‘s X and Y coordinates
(use the getter methods)

2013-‐02-‐14	

3	

5

Exercise #1: Reflections

Even though you are not rendering the shooter sprite, it is still
represented and you can still mutate it.

6

Exercise #2: Adding functionality

Now we want to modify the ShooterSprite class.

Create four methods: moveLeft, moveRight, moveUp,
moveDown

•  In the body of each method, add functionality to translate the x and
y anchor point in the appropriate direction. You can choose the
granularity of the move (big or small).

•  for all method, the returns are void

•  for all methods, there are no parameters

•  Eventually, you will need to implement functionality to keep the
sprite from going off the screen. But you can leave this until
Exercise #5.

2013-‐02-‐14	

4	

7

Exercise #2: Adding functionality

Don’t forget to add method comments (the comment block at the start
of the method).

Select the package and regenerate the javadoc (Project -> Generate
Javadoc)

Test the methods by invoking them in the Lab06Tester
testing stub and printing out the new position of the sprite.

8

Exercise #2: Reflections

Lab06Tester is serving as a (sort of) testing harness. We are using
it as a sandbox for testing out the movement methods. You are
examining the outcomes of the method invocations by manually
checking the console outputs (e.g.,the x,y coordinate positions before
and after the method invocations).

If we wanted to make Lab06Tester a fully-fledged testing harness,
we would also need to implement code to validate the outcome of the
method invocations (we should programmatically rather than manually
be checking the outcomes).

2013-‐02-‐14	

5	

9

Exercise #3: Adding visibility

Now we want to modify the GameCanvas class.

Add a getter method to this class so that clients of the GameCanvas
class can obtain a reference to the ShooterSprite object.

10

Exercise #4: Connecting the pieces

Now we want to modify the GameObserver class.

Decide which keyboard buttons you want to correspond to the left,
right, up, down movements.

Examine the API for the KeyEvent class. Read the class comment
and pay particular attention to the part about virtual key codes.

Locate the static field that represents the four keyboard buttons (e.g., if
you choose “u” for up, then the corresponding virtual key code would
be KeyEvent.VK_U)

Examine the body of the keyReleased method. Observe that action
is taken conditionally, only in the event of KeyEvent.VK_SPACE.

2013-‐02-‐14	

6	

11

Exercise #4: Connecting the pieces

Decide which type of key event you want the movement to be tied to
(key press, key release, key typed).

If you are not sure, then experiment with them all.

Modify the body of the method to also test for the directional key
events. Conditionally move the shooter sprite, as per the user actions.

12

Exercise #5

Go back and refine your moveLeft, moveRight, moveUp,
moveDown methods to implement checking so that the shooter sprite
cannot leave the game field.

In the vertical dimension, there is a complication because the titlebar
occupies screen real estate and displaces the x,y coordinate of the
shooter sprite’s bounding box.

To turn off the title bar, invoke the following method immediately after
the JFrame is constructed

theGameWindow.setUndecorated(true);

