Read on your own

o Strongly connected components
(22.3 In Edition 2, 22.5 in Edition 3).

7123/2013 CSE 3101

Next....

Shortest path problems
Single-source shortest paths in weighted graphs
— Shortest-Path Problems
— Properties of Shortest Paths, Relaxation
— Dijkstra’s Algorithm
— Bellman-Ford Algorithm
— Shortest-Paths in DAG’s

7123/2013 CSE 3101 2

Shortest Path

« Generalize distance to weighted setting
e Digraph G = (V,E) with weight function

W: E — R (assigning real values to edges)
« Weightof pathp=v; >V, > ... 5> VIS

W(P) = 3 W(V, Y, .

e Shortest path = a path of the minimum weight

« Applications
— static/dynamic network routing
— robot motion planning
— map/route generation in traffic

7123/2013 CSE 3101 3

Shortest path problems

e Shortest-Path problems
— Unweighted shortest-paths — BFS.

— Single-source, single-destination: Given two
vertices, find a shortest path between them.

— Single-source, all destinations: Find a
shortest path from a given source (vertex s) to
each of the vertices. The topic of this lecture.

[Solution to this problem solves the previous
problem efficiently]. Greedy algorithm!

— All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

7123/2013 CSE 3101 4

Optimal Substructure

 Theorem: subpaths of shortest paths
are shortest paths

* Proof (cut and paste)

— If some subpath were not the shortest path,
one could substitute the shorter subpath
and create a shorter total path

O—O—0O0—0O—=0—0

Suggests that there may be a greedy algorithm

7123/2013 CSE 3101 5

Triangle Inequality

o Definition

— 9d(u,v) = weight of a shortest path from uto v
« Theorem

— 3(u,v) <8(u,x) + d(x,v) for any x
e Proof

— shortest path u € v is no longer than any other
path u € v — In particular, the path concatenating
the shortest path u € x with the shortest path x e v

7123/2013 CSE 3101 6

Negative Weights and Cycles?

 Negative edges are OK, as long as there are
no negative weight cycles (otherwise paths
with arbitrary small “lengths” would be
possible)

e Shortest-paths can have no cycles (otherwise
we could improve them by removing cycles)

— Any shortest-path in graph G can be no longer
than n — 1 edges, where n is the number of

vertices

7123/2013 CSE 3101

Relaxation

 For each vertex in the graph, we maintain
d[v], the estimate of the shortest path from s,

Initialized to « at start

 Relaxing an edge (u,v) means testing
whether we can improve the shortest path to

v found so far by going through u

u , Vv u , \ Relax (u,v,w)
it d[v] >
dlfu]+w(u,Vv)then
| Relax(u,v) | Relax(u,v) d[v] <« d[u]+w(u,v)

5 alvl «
U v u v

7123/2013 CSE 3101 8

Dijkstra's Algorithm

 Non-negative edge weights
e Greedy, similar to Prim's algorithm for MST

 Like breadth-first search (if all weights =1,
one can simply use BFS)

o Use Q, priority queue keyed by d[v] (BFS
used FIFO queue, here we use a PQ, which
IS re-organized whenever some d decreases)

e Basic idea
— maintain a set S of solved vertices

— at each step select "closest" vertex u, add it to S,
and relax all edges from u

7123/2013 CSE 3101

Dijkstra's Algorithm: pseudocode

o Graph G, weight function w, root s

DIIKSTRA(G, w, s)
1 foreachw eV
2 do d[v] « oo
3 dls| 0
18«0 1> Setof discovered nodes
Y Q—V
6 while Q # ()
7 do u +— EXTRACT-MIN(Q)
S — Su{u}
for each v € Adju]
do if d[v| > dlu| + wiw. v)
then dv] — dfu]+ w(u. v)

relaxing
edges

= O D G0

1
1

7123/2013 CSE 3101 10

7123/2013

Dijkstra's Algorithm: example

CSE 3101

11

Dijkstra's Algorithm: example (2)

v
i
7
y

e Observe
— relaxation step (lines 10-11)
— setting d[v] updates Q (needs Decrease-Key)
— similar to Prim's MST algorithm

7123/2013 CSE 3101

12

Dijkstra's Algorithm: correctness

 We will prove that whenever u is added to S,
d[u] = d(s,u), I.e., that d iIs minimum, and that
equality Is maintained thereafter

e Proof

— Note that Vv, d[v] > d(s,v)

— Let u be the first vertex picked such that there is a
shorter path than d[u], I.e., that = d[u] > d(s,u)

— We will show that this assumption leads to a
contradiction

7123/2013 CSE 3101 13

Dijkstra's Algorithm: correctness (2)

e Lety be the first vertex € V — S on the actual
shortest path from s to u, then it must be that
d[y] = o (s,y) because

— d[x] is set correctly for y's predecessor X € S on
the shortest path (by choice of u as the first vertex
for which d is set incorrectly)

— when the algorithm inserted x into S, it relaxed the
edge (x,y), assigning d[y] the correct value

7123/2013 CSE 3101 14

Dijkstra's Algorithm: correctness (3)

V

d[u] o(s,u) (initial assumption)
o(s,y)+0o(y,u) (optimal substructure)
d[y]+0o(y,u) (correctness of d[y])

dly] (no negative weights)

V-l

e But d[u] > d|y] = algorithm would have
chosen y (from the PQ) to process next, not u

— Contradiction

e Thus d[u] = 8(s,u) at time of insertion of u Into
S, and Dijkstra's algorithm iIs correct

7123/2013 CSE 3101 15

Dijkstra's Algorithm: running time

Extract-Min executed |V| time
 Decrease-Key executed |E| time

* Time = |V| TExtract-Min T |E| TDecrease-Key

* T depends on different Q implementations

Q T(Extract- | T(Decrease- Total

Min) Key)
array AY) 1) AV ?)
binary heap Alg V) Alg V) OE Ig V)
Fibonacci heap g V) (1) (amort.) OV lgV + E)

7123/2013 CSE 3101 16

Bellman-Ford Algorithm

e Dijkstra’s doesn’t work when there are
negative edges:

— Intuition: we can not be greedy any more
on the assumption that the lengths of paths
will only increase in the future

 Bellman-Ford algorithm detects
negative cycles (returns false) or returns
the shortest path-tree

7123/2013 CSE 3101 17

Bellman-Ford Algorithm

BelIman-Ford(G,w,s)

01 for each v € V[(G]

02 dv] < «

03 d[s] « O

04 n[s] « NIL

05 for 1 « 1 to |V[G]]-1 do

06 for each edge (u,v) € E[G] do

07 Relax (u,v,w)

08 for each edge (u,v) € E[G] do

09 it d[v] > dJu] + w(u,v) then return false

10 return true

7123/2013 CSE 3101

Bellman-Ford Algorithm: example

N

N~

Oz IRyl
tﬁvl.mngy
7 MN

19

CSE 3101

7123/2013

Bellman-Ford Algorithm: example (2)

e Bellman-Ford running time:
- (IVI-DIE| + |[E[= O(VI|E])

7123/2013 CSE 3101

20

Bellman-Ford Algorithm: correctness

* Let 6(s,u) denote the length of path from s to u,
that is shortest among all paths, that contain at
most | edges

* Prove by induction that d[u]= &(s,u) after the i-th
iteration of Bellman-Ford

— Base case (i=0) trivial

— Inductive step (say d[u] = &_,(s,u)):
 Either 6(s,u) = &_,(s,u)
+ Or §(s.U) = 8.4(s.2) + W(z,u)

 In an iteration we try to relax each edge ((z,u) also),
so we will catch both cases, thus d[u] = &(s,u)

7123/2013 CSE 3101 21

Bellman-Ford Algorithm: correctness (2)

e After n-1 iterations, d[u] = o6,,(s,u), for each
vertex u.

 |f there is still some edge to relax in the graph,
then there Is a vertex u, such that

0.(S,u) < &, ,(S,u). But there are only n vertices
In G — we have a cycle, and it must be negative.

 Otherwise, d[u]= o,,(s,u) = &s,u), for all u,
since any shortest path will have at most n-1

edges

7123/2013 CSE 3101 22

Shortest-Path in DAG’s

* Finding shortest paths in DAG’s Is much
easier, because It Is easy to find an order In
which to do relaxations — Topological sorting!

DAG-Shortest-Paths(G,w,s)

01 for each v € V[(G]

02 dlv] <« «

03 d[s] <« O

04 topologically sort V[G]

05 for each vertex u, taken i1n topological order do
06 for each vertex v € Adj[u] do

07 Relax(u,v,w)

7123/2013 CSE 3101 23

Shortest-Path in DAG’s (2)

 Running time:

®(V+E) — only one relaxation for each edge,
V times faster than Bellman-Ford

7123/2013 CSE 3101

24

Next....

Next: All-pairs shortest paths in weighted graphs
— Matrix multiplication and shortest-paths

— Floyd Warshall algorithm

— Transitive closure

7123/2013 CSE 3101 25

All-pairs shortest paths

e Suppose that we want to calculate information
about shortest paths between all pairs of

vertices.
6‘@

(©) ©

0 1 o 1

» We have a matrix W of weights: ~ |” 8 . (1)
o oo o 0

0 1 o 1

_ o 0 o 1

e \We want a matrix: 1 2 0 2
o oo o 0

7123/2013 CSE 3101 26

A Recursive Solution

¢ 1,0 =0if is]

o I

oo otherwise
min (Iij(m_1)1 min g ., {l;™Y Wi})

— mi 1
=min o, {I;™Y Wi}

3(ij) = 1,0V = O = oD

7123/2013

CSE 3101

27

Matrix multiplication:

« |f A is the adjacency matrix for a graph G, then the ijj ¥
entry of A" is exactly the number of ways you can get from
vertex 1 to vertex | in exactly n steps.

(Am+l)ij = i(Am)ik Akj

ways to get from i # ways to get from k
to k in exactly m to j in one step

steps

If we replace addition of elements by minimum, and
multiplication of elements by addition, then the ij th entry
of Wn Is exactly the shortest path from vertex i to vertex |

In at most n steps. _
W m+l)ij = Tq'l”((wm)ik +Wj)

‘ Shortest path weight Weight for a further
for m steps from i to k step from k to j

7123/2013 CSE 3101 28

Matrix Multiplication contd.

* As In Bellman-Ford, no shortest path has more
than |V|-1 vertices in it. Therefore, all the

Information that we need can be read from the
entries in WIVI-L,

e Each matrix “multiplication” takes O(V?3).

7123/2013 CSE 3101 29

Matrix Multiplication - complexity

. Calculating W™ takes:
— O(V4) if we do naive exponentiation:
¢« A0 =|
e AM+l= A AM
— Q: How many multiplications are required to
compute x"?

— O(V3log V) if we do fast exponentiation:

o AO =]
e Al =A
° A2m — (Am)Z

® A2m+1 = A (Am)z

7123/2013 CSE 3101 30

The Floyd-Warshall algorithm

* |Instead of increasing the length of the path
allowed at each step, suppose that we increase
the number of vertices that can be used In

forming such paths.

e Let DK be the matrix whose ij th com

ponent Is

the shortest-path weight for a path from vertex i

to vertex | using only vertices 1 thoug
intermediates.

in terms of D" ?

7123/2013 CSE 3101

N k as

Note that D© =W. How can we calculate D(+1)

31

Floyd-Warshall algorithm — contd.

* A shortest path from i to | with intermediate
vertices in 1..k is either:

— A shortest path from 1 to j with intermediate vertices in

3

1..(k-1).

— A shortest path from 1 to k, and a shortest path from k
to J, both with vertices in 1..(k-1).

0 k. &

e Hence, for k>1, we can define:
d®, = min(d®D;, D, + dkD),)

7123/2013 CSE 3101 32

The Floyd-Warshall algorithm

 Let n =|V|, and calculate all F[K] values using:

Time and space
complexity are O(V3)

FLOYD-WARSHALL (W)

I n <« rows[W]
2 DO W

3 fork < 1ton

4 do fori «— 1 ton

S do for j < 1ton

f’ do dif < min (4}, 4+)
7 return D _

7123/2013 CSE 3101 33

Floyd-Warshall algorithm - improvement

In fact, we can do better - we only want
D) :

 Store only D™

e Time complexity is O(V3), space
complexity is O(V?).

7123/2013 CSE 3101

34

Transitive closure

Given a directed graph G = (V,E), construct a new
graph G’ = (V,E’) in which (i,)) €E’ Iif there is a path
Fromitojin G.

e ;@ = 0ifizjand (i,j) E
= 1ifigj or (i,j) eE
And for m>0
tij(m) = tij(m'l)v (tim(m-l) A tmj(m-l))

 Reachabillity queries

7123/2013 CSE 3101 35

Transitive closure algorithm

Very similar to Floyd Warshall:
TRANSITIVE-CLOSURE(G)

| n <« |[VIG]]

2 fori <« 1ton

3 dofor j — 1ton

4 doifi = jor(i,j) € E[G]
5 then 7 « 1

6 else r}f” — 0

7 fork <« 1ton

8 dofori <« 1ton

9 do for j — 1 ton

(k) (k—1) (k—1) (k=1)
10 dot;" <t V(AT
11 return T
7/23/2013 CSE 3101 36

Transitive closure example

1 0 0 0 1 0 0 0 1 0 0 0
0 1 1 1 0 1 1 1 01 1 1
7O — mn —) _
o1 10f T o1t 10| T o 11
1 0 1 1 1 0 1 1 1 0 1 1
I 0 0 0 1 0 0 0
3_]0 1 1 1 @ _ |1 1 11
T o1 1 1| TV 01
11 1 1 I 1 1 1

Figure 25.5 A directed graph and the matrices 7 %) computed by the transitive-closure algorithm.

7123/2013 CSE 3101 37

Summary

* \We have seen different algorithms for:

— computing spanning trees,;

— computing minimum spanning trees;

— computing single-source shortest paths;
— computing all-pairs shortest paths.

— Computing transitive closure.

* Greedy algorithms and dynamic
programming play key roles in these
algorithms.

7123/2013 CSE 3101

38

