
7/23/2013 CSE 3101 1

Read on your own

• Strongly connected components
(22.3 in Edition 2, 22.5 in Edition 3).

7/23/2013 CSE 3101 2

Next....

Shortest path problems
Single-source shortest paths in weighted graphs
– Shortest-Path Problems
– Properties of Shortest Paths, Relaxation
– Dijkstra’s Algorithm
– Bellman-Ford Algorithm
– Shortest-Paths in DAG’s

7/23/2013 CSE 3101 3

Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function

W: E R (assigning real values to edges)
• Weight of path p = v1 v2 … vk is

• Shortest path = a path of the minimum weight
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic

1

1
1

() (,)
k

i i
i

w p w v v

7/23/2013 CSE 3101 4

Shortest path problems

• Shortest-Path problems
– Unweighted shortest-paths – BFS.
– Single-source, single-destination: Given two

vertices, find a shortest path between them.
– Single-source, all destinations: Find a

shortest path from a given source (vertex s) to
each of the vertices. The topic of this lecture.
[Solution to this problem solves the previous
problem efficiently]. Greedy algorithm!

– All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

7/23/2013 CSE 3101 5

Optimal Substructure

• Theorem: subpaths of shortest paths
are shortest paths

• Proof (cut and paste)
– if some subpath were not the shortest path,

one could substitute the shorter subpath
and create a shorter total path

Suggests that there may be a greedy algorithm

7/23/2013 CSE 3101 6

Triangle Inequality

• Definition
– (u,v) weight of a shortest path from u to v

• Theorem
– (u,v) (u,x) + (x,v) for any x

• Proof
– shortest path u v is no longer than any other

path u v – in particular, the path concatenating
the shortest path u x with the shortest path x v

7/23/2013 CSE 3101 7

Negative Weights and Cycles?

• Negative edges are OK, as long as there are
no negative weight cycles (otherwise paths
with arbitrary small “lengths” would be
possible)

• Shortest-paths can have no cycles (otherwise
we could improve them by removing cycles)
– Any shortest-path in graph G can be no longer

than n – 1 edges, where n is the number of
vertices

7/23/2013 CSE 3101 8

Relaxation

• For each vertex in the graph, we maintain
d[v], the estimate of the shortest path from s,
initialized to at start

• Relaxing an edge (u,v) means testing
whether we can improve the shortest path to
v found so far by going through u

vu vu

u v

2

2

Relax(u,v)

u v

2

2

Relax(u,v)

Relax (u,v,w)
if d[v] >

d[u]+w(u,v)then
d[v] d[u]+w(u,v)
[v] u

7/23/2013 CSE 3101 9

Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1,

one can simply use BFS)
• Use Q, priority queue keyed by d[v] (BFS

used FIFO queue, here we use a PQ, which
is re-organized whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S,

and relax all edges from u

7/23/2013 CSE 3101 10

Dijkstra's Algorithm: pseudocode

• Graph G, weight function w, root s

relaxing
edges

7/23/2013 CSE 3101 11

Dijkstra's Algorithm: example

s

u v

yx

10

5

1

2 3 9
4 67

2

s

u v

yx

10

5

1

2 3 9
4 67

2

u v

s

yx

10

5

1

2 3 9
4 67

2

s

u v

yx

10

5

1

2 3 9
4 67

2

7/23/2013 CSE 3101 12

• Observe
– relaxation step (lines 10-11)
– setting d[v] updates Q (needs Decrease-Key)
– similar to Prim's MST algorithm

Dijkstra's Algorithm: example (2)

u v

yx

10

5

1

2 3 9
4 67

2

u v

yx

10

5

1

2 3 9
4 67

2

7/23/2013 CSE 3101 13

Dijkstra's Algorithm: correctness

• We will prove that whenever u is added to S,
d[u] = d(s,u), i.e., that d is minimum, and that
equality is maintained thereafter

• Proof
– Note that v, d[v] d(s,v)
– Let u be the first vertex picked such that there is a

shorter path than d[u], i.e., that d[u] > d(s,u)
– We will show that this assumption leads to a

contradiction

7/23/2013 CSE 3101 14

Dijkstra's Algorithm: correctness (2)

• Let y be the first vertex V – S on the actual
shortest path from s to u, then it must be that
d[y] = (s,y) because
– d[x] is set correctly for y's predecessor x S on

the shortest path (by choice of u as the first vertex
for which d is set incorrectly)

– when the algorithm inserted x into S, it relaxed the
edge (x,y), assigning d[y] the correct value

7/23/2013 CSE 3101 15

• But d[u] > d[y] algorithm would have
chosen y (from the PQ) to process next, not u
 Contradiction

• Thus d[u] = (s,u) at time of insertion of u into
S, and Dijkstra's algorithm is correct

Dijkstra's Algorithm: correctness (3)

[] (,) (initial assumption)
(,) (,) (optimal substructure)
[] (,) (correctness of [])
[] (no negative weights)

d u s u
s y y u

d y y u d y
d y

7/23/2013 CSE 3101 16

Dijkstra's Algorithm: running time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key

• T depends on different Q implementations

(V lgV + E)(1) (amort.)(lg V)Fibonacci heap
(E lg V)(lg V)(lg V)binary heap
(V 2)(1)(V)array

TotalT(Decrease-
Key)

T(Extract-
Min)

Q

7/23/2013 CSE 3101 17

Bellman-Ford Algorithm

• Dijkstra’s doesn’t work when there are
negative edges:
– Intuition: we can not be greedy any more

on the assumption that the lengths of paths
will only increase in the future

• Bellman-Ford algorithm detects
negative cycles (returns false) or returns
the shortest path-tree

7/23/2013 CSE 3101 18

Bellman-Ford Algorithm

Bellman-Ford(G,w,s)
01 for each v V[G]
02 d[v]
03 d[s] 0
04 [s] NIL
05 for i 1 to |V[G]|-1 do
06 for each edge (u,v) E[G] do
07 Relax (u,v,w)

08 for each edge (u,v) E[G] do
09 if d[v] > d[u] + w(u,v) then return false
10 return true

7/23/2013 CSE 3101 19

Bellman-Ford Algorithm: example

5

s

zy

6

7

8
-3

7
2

9

-2
xt

-4

s

zy

6

7

8
-3

7
2

9

-2
xt

-4

s

zy

6

7

8
-3

7
2

9

-2
xt

-4

s

zy

6

7

8
-3

7
2

9

-2
xt

-4

5

5 5

7/23/2013 CSE 3101 20

Bellman-Ford Algorithm: example (2)

s

zy

6

7

8
-3

7
2

9

-2
xt

-4

• Bellman-Ford running time:
– (|V|-1)|E| + |E| = (|V||E|)

5

7/23/2013 CSE 3101 21

Bellman-Ford Algorithm: correctness

• Let i(s,u) denote the length of path from s to u,
that is shortest among all paths, that contain at
most i edges

• Prove by induction that d[u]= i(s,u) after the i-th
iteration of Bellman-Ford
– Base case (i=0) trivial
– Inductive step (say d[u] = i-1(s,u)):

• Either i(s,u) = i-1(s,u)
• Or i(s,u) = i-1(s,z) + w(z,u)
• In an iteration we try to relax each edge ((z,u) also),

so we will catch both cases, thus d[u] = i(s,u)

7/23/2013 CSE 3101 22

Bellman-Ford Algorithm: correctness (2)

• After n-1 iterations, d[u] = n-1(s,u), for each
vertex u.

• If there is still some edge to relax in the graph,
then there is a vertex u, such that

 n(s,u) < n-1(s,u). But there are only n vertices
 in G – we have a cycle, and it must be negative.
• Otherwise, d[u]= n-1(s,u) = (s,u), for all u,

since any shortest path will have at most n-1
edges

7/23/2013 CSE 3101 23

Shortest-Path in DAG’s

• Finding shortest paths in DAG’s is much
easier, because it is easy to find an order in
which to do relaxations – Topological sorting!

DAG-Shortest-Paths(G,w,s)
01 for each v V[G]
02 d[v]
03 d[s] 0
04 topologically sort V[G]

05 for each vertex u, taken in topological order do
06 for each vertex v Adj[u] do
07 Relax(u,v,w)

7/23/2013 CSE 3101 24

Shortest-Path in DAG’s (2)

• Running time:
(V+E) – only one relaxation for each edge,

V times faster than Bellman-Ford

7/23/2013 CSE 3101 25

Next....

Next: All-pairs shortest paths in weighted graphs
– Matrix multiplication and shortest-paths
– Floyd Warshall algorithm
– Transitive closure

7/23/2013 CSE 3101 26

All-pairs shortest paths

• Suppose that we want to calculate information
about shortest paths between all pairs of
vertices.

• We have a matrix W of weights:

• We want a matrix:

0
2021
10
110

a b

c d

0
0001
10
110

7/23/2013 CSE 3101 27

A Recursive Solution

• lij
(0) = 0 if i=j

= otherwise
• lij

(m) = min (lij
(m-1), min 1k n {lik

(m-1) +wkj})
= min 1k n {lik

(m-1) +wkj}

(i,j) = lij
(n-1) = lij

(n) = lij
(n+1) …..

7/23/2013 CSE 3101 28

Matrix multiplication:

• If A is the adjacency matrix for a graph G, then the ij th
entry of An is exactly the number of ways you can get from
vertex i to vertex j in exactly n steps.

q

k
kjik

m
ij

m AAA
1

1)(

ways to get from i
to k in exactly m

steps

ways to get from k
to j in one step

 kjik
m

q

kij
m WWW

)(min
1

1

Shortest path weight
for m steps from i to k

Weight for a further
step from k to j

If we replace addition of elements by minimum, and
multiplication of elements by addition, then the ij th entry
of Wn is exactly the shortest path from vertex i to vertex j
in at most n steps.

7/23/2013 CSE 3101 29

Matrix Multiplication contd.

• As in Bellman-Ford, no shortest path has more
than |V|-1 vertices in it. Therefore, all the
information that we need can be read from the
entries in W|V|-1.

• Each matrix “multiplication” takes O(V3).

7/23/2013 CSE 3101 30

Matrix Multiplication - complexity

• Calculating W|V|-1 takes:
– O(V4) if we do naïve exponentiation:

• A0 = I
• Am+1 = A Am

– Q: How many multiplications are required to
compute xn ?

– O(V3 log V) if we do fast exponentiation:
• A0 = I
• A1 = A
• A2m = (Am)2

• A2m+1 = A (Am)2

7/23/2013 CSE 3101 31

The Floyd-Warshall algorithm

• Instead of increasing the length of the path
allowed at each step, suppose that we increase
the number of vertices that can be used in
forming such paths.

• Let D(k) be the matrix whose ij th component is
the shortest-path weight for a path from vertex i
to vertex j using only vertices 1 though k as
intermediates.

• Note that D(0) = W. How can we calculate D(n+1)

in terms of D(n) ?

7/23/2013 CSE 3101 32

Floyd-Warshall algorithm – contd.

• A shortest path from i to j with intermediate
vertices in 1..k is either:
– A shortest path from i to j with intermediate vertices in

1..(k-1).

– A shortest path from i to k, and a shortest path from k
to j, both with vertices in 1..(k-1).

• Hence, for k>1, we can define:
d(k)

ij = min(d(k-1)
ij, d(k-1)

ik + d(k-1)
kj)

i j

i k j

7/23/2013 CSE 3101 33

The Floyd-Warshall algorithm

• Let n = |V|, and calculate all F[k] values using:

Time and space
complexity are O(V3)

7/23/2013 CSE 3101 34

Floyd-Warshall algorithm - improvement

• In fact, we can do better - we only want
D(n) :

• Store only D(n)

• Time complexity is O(V3), space
complexity is O(V2).

7/23/2013 CSE 3101 35

Transitive closure

• tij
(0) = 0 if ij and (i,j) E

= 1 if i=j or (i,j) E
And for m>0

tij
(m) = tij

(m-1) (tim
(m-1) tmj

(m-1))
• Reachability queries

Given a directed graph G = (V,E), construct a new
graph G’ = (V,E’) in which (i,j) E’ if there is a path
From i to j in G.

7/23/2013 CSE 3101 36

Transitive closure algorithm

Very similar to Floyd Warshall:

7/23/2013 CSE 3101 37

Transitive closure example

7/23/2013 CSE 3101 38

Summary

• We have seen different algorithms for:
– computing spanning trees;
– computing minimum spanning trees;
– computing single-source shortest paths;
– computing all-pairs shortest paths.
– Computing transitive closure.

• Greedy algorithms and dynamic
programming play key roles in these
algorithms.

