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Read on your own

• Strongly connected components 
(22.3 in Edition 2, 22.5 in Edition 3).
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Next....

Shortest path problems
Single-source shortest paths in weighted graphs
– Shortest-Path Problems
– Properties of Shortest Paths, Relaxation
– Dijkstra’s Algorithm
– Bellman-Ford Algorithm
– Shortest-Paths in DAG’s
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Shortest Path

• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function 

W: E  R (assigning real values to edges)
• Weight of path p = v1  v2  …  vk is

• Shortest path = a path of the minimum weight
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic
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Shortest path problems

• Shortest-Path problems
– Unweighted shortest-paths – BFS.  
– Single-source, single-destination: Given two 

vertices, find a shortest path between them.
– Single-source, all destinations: Find a 

shortest path from a given source (vertex s) to 
each of the vertices. The topic of this lecture.
[Solution to this problem solves the previous 
problem efficiently]. Greedy algorithm!

– All-pairs. Find shortest-paths for every pair of 
vertices. Dynamic programming algorithm.
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Optimal Substructure

• Theorem: subpaths of shortest paths 
are shortest paths

• Proof (cut and paste)
– if some subpath were not the shortest path, 

one could substitute the shorter subpath 
and create a shorter total path

Suggests that there may be a greedy algorithm
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Triangle Inequality

• Definition
– (u,v)  weight of a shortest path from u to v

• Theorem
– (u,v)  (u,x) + (x,v) for any x

• Proof 
– shortest path u  v is no longer than any other 

path u  v – in particular, the path concatenating 
the shortest path u  x with the shortest path x  v 
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Negative Weights and Cycles?

• Negative edges are OK, as long as there are 
no negative weight cycles (otherwise paths 
with arbitrary small “lengths” would be 
possible)

• Shortest-paths can have no cycles (otherwise 
we could improve them by removing cycles)
– Any shortest-path in graph G can be no longer 

than n – 1 edges, where n is the number of 
vertices
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Relaxation

• For each vertex in the graph, we maintain 
d[v], the estimate of the shortest path from s, 
initialized to  at start

• Relaxing an edge (u,v) means testing 
whether we can improve the shortest path to 
v found so far by going through u
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Relax(u,v)

Relax (u,v,w)
if d[v] > 

d[u]+w(u,v)then
d[v]  d[u]+w(u,v)
[v]  u
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Dijkstra's Algorithm

• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1, 

one can simply use BFS)
• Use Q, priority queue keyed by d[v] (BFS 

used FIFO queue, here we use a PQ, which 
is re-organized whenever some d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S, 

and relax all edges from u
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Dijkstra's Algorithm: pseudocode

• Graph G, weight function w, root s

relaxing 
edges
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Dijkstra's Algorithm: example

 

 

s

u v

yx

10

5

1

2 3 9
4 67

2

 

 

s

u v

yx

10

5

1

2 3 9
4 67

2

u v

 

 

s

yx

10

5

1

2 3 9
4 67

2

 

 

s

u v

yx

10

5

1

2 3 9
4 67

2



7/23/2013 CSE 3101 12

• Observe
– relaxation step (lines 10-11)
– setting d[v] updates Q (needs Decrease-Key)
– similar to Prim's MST algorithm

Dijkstra's Algorithm: example (2)

 

 



u v

yx

10

5

1

2 3 9
4 67

2

 

 



u v

yx

10

5

1

2 3 9
4 67

2



7/23/2013 CSE 3101 13

Dijkstra's Algorithm: correctness

• We will prove that whenever u is added to S, 
d[u] = d(s,u), i.e., that d is minimum, and that 
equality is maintained thereafter

• Proof
– Note that v, d[v]  d(s,v)
– Let u be the first vertex picked such that there is a 

shorter path than d[u], i.e., that  d[u] > d(s,u)
– We will show that this assumption leads to a 

contradiction
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Dijkstra's Algorithm: correctness (2)

• Let y be the first vertex V – S on the actual 
shortest path from s to u, then it must be that 
d[y] = (s,y) because
– d[x] is set correctly for y's predecessor x S on 

the shortest path (by choice of u as the first vertex 
for which d is set incorrectly)

– when the algorithm inserted x into S, it relaxed the 
edge (x,y), assigning d[y] the correct value
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• But d[u] > d[y]  algorithm would have 
chosen y (from the PQ) to process next, not u
 Contradiction

• Thus d[u] = (s,u) at time of insertion of u into 
S, and Dijkstra's algorithm is correct

Dijkstra's Algorithm: correctness (3)

[ ] ( , ) (initial assumption)
( , ) ( , ) (optimal substructure)
[ ] ( , ) (correctness of [ ])
[ ] (no negative weights)

d u s u
s y y u

d y y u d y
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Dijkstra's Algorithm: running time

• Extract-Min executed |V| time
• Decrease-Key executed |E| time
• Time = |V| TExtract-Min + |E| TDecrease-Key

• T depends on different Q implementations

(V lgV + E)(1) (amort.)(lg V)Fibonacci heap
(E lg V)(lg V)(lg V)binary heap
(V 2)(1)(V)array 

TotalT(Decrease-
Key)

T(Extract-
Min)

Q
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Bellman-Ford Algorithm

• Dijkstra’s doesn’t work when there are 
negative edges:
– Intuition:  we can not be greedy any more 

on the assumption that the lengths of paths 
will only increase in the future

• Bellman-Ford algorithm detects 
negative cycles (returns false) or returns 
the shortest path-tree 
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Bellman-Ford Algorithm

Bellman-Ford(G,w,s)
01 for each v  V[G]
02    d[v]  
03 d[s]  0
04 [s]  NIL
05 for i  1 to |V[G]|-1 do
06     for each edge (u,v)  E[G] do
07 Relax (u,v,w)  

08 for each edge (u,v)  E[G] do
09 if d[v] > d[u] + w(u,v) then return false
10 return true
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Bellman-Ford Algorithm: example
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Bellman-Ford Algorithm: example (2)
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• Bellman-Ford running time:
– (|V|-1)|E| + |E| = (|V||E|)
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Bellman-Ford Algorithm: correctness

• Let i(s,u) denote the length of path from s to u, 
that is shortest among all paths, that contain at 
most i edges

• Prove by induction that d[u]= i(s,u) after the i-th 
iteration of Bellman-Ford
– Base case (i=0) trivial
– Inductive step (say d[u] = i-1(s,u)): 

• Either i(s,u) = i-1(s,u) 
• Or i(s,u) = i-1(s,z) + w(z,u)
• In an iteration we try to relax each edge ((z,u) also), 

so we will catch both cases, thus d[u] = i(s,u)
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Bellman-Ford Algorithm: correctness (2)

• After n-1 iterations, d[u] = n-1(s,u), for each 
vertex u.

• If there is still some edge to relax in the graph, 
then there is a vertex u, such that

 n(s,u) < n-1(s,u). But there are only n vertices 
 in G – we have a cycle, and it must be negative.
• Otherwise, d[u]= n-1(s,u) = (s,u), for all u, 

since any shortest path will have at most n-1 
edges
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Shortest-Path in DAG’s

• Finding shortest paths in DAG’s is much 
easier, because it is easy to find an order in 
which to do relaxations – Topological sorting!

DAG-Shortest-Paths(G,w,s)
01 for each v  V[G]
02    d[v]  
03 d[s]  0
04 topologically sort V[G]

05 for each vertex u, taken in topological order do
06    for each vertex v  Adj[u] do
07       Relax(u,v,w)
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Shortest-Path in DAG’s (2)

• Running time:
(V+E) – only one relaxation for each edge, 

V times faster than Bellman-Ford
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Next....

Next: All-pairs shortest paths in weighted graphs
– Matrix multiplication and shortest-paths 
– Floyd Warshall algorithm
– Transitive closure
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All-pairs shortest paths

• Suppose that we want to calculate information 
about shortest paths between all pairs of 
vertices.

• We have a matrix W of weights:

• We want a matrix:
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A Recursive Solution

• lij
(0) = 0 if i=j

=   otherwise
• lij

(m)  = min (lij
(m-1), min 1k n {lik

(m-1) +wkj} )
= min 1k n {lik

(m-1) +wkj}

(i,j) = lij
(n-1) = lij

(n) = lij
(n+1) …..
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Matrix multiplication:

• If A is the adjacency matrix for a graph G, then the ij th
entry of An is exactly the number of ways you can get from 
vertex i to vertex j in exactly n steps.

  


 
q

k
kjik

m
ij

m AAA
1

1 )(

# ways to get from i 
to k in exactly m 

steps

# ways to get from k 
to j in one step

   kjik
m

q

kij
m WWW 



 )(min
1

1

Shortest path weight 
for m steps from i to k

Weight for a further 
step from k to j

If we replace addition of elements by minimum, and 
multiplication of elements by addition, then the ij th entry 
of Wn is exactly the shortest path from vertex i to vertex j 
in at most n steps.
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Matrix Multiplication contd.

• As in Bellman-Ford, no shortest path has more 
than |V|-1 vertices in it.  Therefore, all the 
information that we need can be read from the 
entries in W|V|-1.

• Each matrix “multiplication” takes O(V3).
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Matrix Multiplication - complexity

• Calculating W|V|-1 takes:
– O(V4) if we do naïve exponentiation:

• A0 = I
• Am+1 = A Am

– Q: How many multiplications are required to 
compute xn ?

– O(V3 log V) if we do fast exponentiation:
• A0 = I
• A1 = A
• A2m = (Am)2

• A2m+1 = A (Am)2
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The Floyd-Warshall algorithm

• Instead of increasing the length of the path 
allowed at each step, suppose that we increase 
the number of vertices that can be used in 
forming such paths.

• Let D(k) be the matrix whose ij th component is 
the shortest-path weight for a path from vertex i 
to vertex j using only vertices 1 though k as 
intermediates.

• Note that D(0) = W.  How can we calculate D(n+1)

in terms of D(n) ?
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Floyd-Warshall algorithm – contd.

• A shortest path from i to j with intermediate 
vertices in 1..k is either:
– A shortest path from i to j with intermediate vertices in 

1..(k-1).

– A shortest path from i to k, and a shortest path from k 
to j, both with vertices in 1..(k-1).

• Hence, for k>1, we can define:
d(k)

ij = min(d(k-1)
ij, d(k-1)

ik + d(k-1)
kj)

i j

i k j
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The Floyd-Warshall algorithm

• Let n = |V|, and calculate all F[k] values using:

Time and space 
complexity are O(V3)
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Floyd-Warshall algorithm - improvement

• In fact, we can do better - we only want 
D(n) :

• Store only D(n) 

• Time complexity is O(V3), space 
complexity is O(V2).
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Transitive closure

• tij
(0) =  0 if ij and (i,j) E

=  1 if i=j  or  (i,j) E 
And for m>0

tij
(m)  = tij

(m-1)  (tim
(m-1)  tmj

(m-1) )
• Reachability queries

Given a directed graph G = (V,E), construct a new 
graph G’ = (V,E’) in which (i,j) E’ if there is a path
From i to j in G. 
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Transitive closure algorithm

Very similar to Floyd Warshall:
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Transitive closure example
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Summary

• We have seen different algorithms for:
– computing spanning trees;
– computing minimum spanning trees;
– computing single-source shortest paths;
– computing all-pairs shortest paths.
– Computing transitive closure.

• Greedy algorithms and dynamic 
programming play key roles in these 
algorithms.


