
7/30/2013 CSE 3101 53

DFS Parenthesis Theorem (2)

7/30/2013 CSE 3101 54

DFS Edge Classification

• Tree edge (gray to white)
– encounter new vertices (white)

• Back edge (gray to gray)
– from descendant to ancestor

7/30/2013 CSE 3101 55

DFS Edge Classification (2)

• Forward edge (gray to black)
– from ancestor to descendant

• Cross edge (gray to black)
– remainder – between trees or subtrees

7/30/2013 CSE 3101 56

DFS Edge Classification (3)

• Tree and back edges are important
• Most algorithms do not distinguish between

forward and cross edges

7/30/2013 CSE 3101 57

Next:

• Application of DFS: Topological Sort

7/30/2013 CSE 3101 58

Directed Acyclic Graphs

• A DAG is a directed graph with no cycles

• Often used to indicate precedences among
events, i.e., event a must happen before b

• An example would be a parallel code
execution

• Total order can be introduced using
Topological Sorting

7/30/2013 CSE 3101 59

DAG Theorem

• A directed graph G is acyclic if and only if a
DFS of G yields no back edges. Proof:
– suppose there is a back edge (u,v); v is an

ancestor of u in DFS forest. Thus, there is a path
from v to u in G and (u,v) completes the cycle

– suppose there is a cycle c; let v be the first
vertex in c to be discovered and u is a
predecessor of v in c.

• Upon discovering v the whole cycle from v to u is white
• We must visit all nodes reachable on this white path

before return DFS-Visit(v), i.e., vertex u becomes a
descendant of v

• Thus, (u,v) is a back edge

• Thus, we can verify a DAG using DFS!

7/30/2013 CSE 3101 60

Topological Sort Example

• Precedence relations: an edge from x to y means
one must be done with x before one can do y

• Intuition: can schedule task only when all of its
subtasks have been scheduled

7/30/2013 CSE 3101 61

Topological Sort

• Sorting of a directed acyclic graph (DAG)
• A topological sort of a DAG is a linear ordering

of all its vertices such that for any edge (u,v) in
the DAG, u appears before v in the ordering

• The following algorithm topologically sorts a
DAG

• The linked lists comprises a total ordering

Topological-Sort(G)
1) call DFS(G) to compute finishing times f[v] for each vertex v
2) as each vertex is finished, insert it onto the front of a linked list
3) return the linked list of vertices

7/30/2013 CSE 3101 62

Topological Sort

• Running time
– depth-first search: O(V+E) time
– insert each of the |V| vertices to the front of

the linked list: O(1) per insertion
• Thus the total running time is O(V+E)

7/30/2013 CSE 3101 63

Topological Sort Correctness

• Claim: for a DAG, an edge
• When (u,v) explored, u is gray. We can

distinguish three cases
– v = gray
 (u,v) = back edge (cycle, contradiction)

– v = white
 v becomes descendant of u
 v will be finished before u
 f[v] < f[u]

– v = black
 v is already finished
 f[v] < f[u]

• The definition of topological sort is satisfied

(,) [] []u v E f u f v  

