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Next: Graph Algorithms

• Graphs Ch 22
• Graph representations

– adjacency list
– adjacency matrix

• Minimum Spanning Trees Ch 23
• Traversing graphs

– Breadth-First Search
– Depth-First Search
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Graphs – Definition

• A graph G = (V,E) is composed of:
– V: set of vertices
– E⊂ V× V: set of edges connecting the vertices

• An edge e = (u,v) is a pair of vertices
• (u,v) is ordered, if G is a directed graph
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Graph Terminology

• adjacent vertices: connected by an edge
• degree (of a vertex): # of adjacent vertices

• path: sequence of vertices v1 ,v2 ,. . .vk such 
that consecutive vertices vi and vi+1 are 
adjacent

Since adjacent vertices each 
count the adjoining edge, it will
be counted twice

deg( ) 2(#  of edges)
v V

v
∈

=∑
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Graph Terminology (2)

• simple path: no repeated vertices



7/16/2013 CSE 3101 5

• cycle: simple path, except that the last vertex 
is the same as the first vertex

• connected graph: any two vertices are 
connected by some path

Graph Terminology (3)
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Graph Terminology (4)

• subgraph: subset of vertices and edges 
forming a graph

• connected component: maximal connected 
subgraph. E.g., the graph below has 3 
connected components
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Graph Terminology (5)

• (free) tree - connected graph without cycles
• forest - collection of trees
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Data Structures for Graphs

• The Adjacency list of a vertex v: a sequence 
of vertices adjacent to v

• Represent the graph by the adjacency lists of 
all its vertices

Space ( deg( )) ( )n v n m= Θ + = Θ +∑
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• Adjacency matrix
• Matrix M with entries for all pairs of vertices
• M[i,j] = true – there is an edge (i,j) in the graph
• M[i,j] = false – there is no edge (i,j) in the graph
• Space = O(n2)

Data Structures for Graphs
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Spanning Tree

• A spanning tree of G is a subgraph which
– is a tree
– contains all vertices of G
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Minimum Spanning Trees

• Undirected, connected 
graph G = (V,E)

• Weight function W: E → R 
(assigning cost or length or 
other values to edges)

( , )
( ) ( , )

u v T
w T w u v

∈

= ∑

Spanning tree: tree that connects all vertices 
Minimum spanning tree: tree that connects all 
the vertices and minimizes
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Optimal Substructure

• MST T

• Removing the edge (u,v) partitions T into T1 and 
T2

• We claim that T1 is the MST of G1=(V1,E1), the 
subgraph of G induced by vertices in T1

• Also, T2 is the MST of G2

1 2( ) ( , ) ( ) ( )w T w u v w T w T= + +

T1

T2
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Greedy Choice

• Greedy choice property: locally optimal (greedy) 
choice yields a globally optimal solution

• Theorem 
– Let G=(V, E), and let S ⊆ V and
– let (u,v) be min-weight edge in G connecting 

S to V – S
– Then (u,v) ∈ T – some MST of G
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Greedy Choice (2)

• Proof
– suppose (u,v) ∉ T
– look at path from u to v in T
– swap (x, y) – the first edge on path from u to v in T that 

crosses from S to V – S
– this improves T – contradiction (T supposed to be MST)

u v

x
y

S V-S
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Generic MST Algorithm

Generic-MST(G, w)
1 A←∅    // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3    Find an edge (u,v) that is safe for A 
4 A←A∪{(u,v)}
5 return A  

Generic-MST(G, w)
1 A←∅    // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3    Find an edge (u,v) that is safe for A 
4 A←A∪{(u,v)}
5 return A  

Safe edge – edge that does not destroy A’s property

MoreSpecific-MST(G, w)
1 A←∅    // Contains edges that belong to a MST
2  while A does not form a spanning tree do
3.1  Make a cut (S, V-S) of G that respects A 
3.2  Take the min-weight edge (u,v) connecting S to V-S  
4 A←A∪{(u,v)}
5 return A  

MoreSpecific-MST(G, w)
1 A←∅    // Contains edges that belong to a MST
2  while A does not form a spanning tree do
3.1  Make a cut (S, V-S) of G that respects A 
3.2  Take the min-weight edge (u,v) connecting S to V-S  
4 A←A∪{(u,v)}
5 return A  
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Prim’s Algorithm

• Vertex based algorithm
• Grows one tree T, one vertex at a time
• A cloud covering the portion of T 

already computed
• Label the vertices v outside the cloud 

with key[v] – the minimum weight of an 
edge connecting v to a vertex in the 
cloud, key[v] = ∞, if no such edge exists
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MST-Prim(G,w,r)
01 Q ← V[G]  // Q – vertices out of T
02 for each u ∈ Q
03    key[u] ← ∞
04 key[r] ← 0
05 π[r] ← NIL
06 while Q ≠ ∅ do
07   u ← ExtractMin(Q)  // making u part of T
08      for each v ∈ Adj[u] do
09         if v ∈ Q and w(u,v) < key[v] then
10            π[v] ← u
11            key[v] ← w(u,v)

Prim’s Algorithm (2)

updating 
keys
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Prim Example
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Prim Example (2)
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Prim Example (3)
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Priority Queues

• A priority queue is a data structure for 
maintaining a set S of elements, each with an 
associated value called key

• We need PQ to support the following operations
– BuildPQ(S) – initializes PQ to contain elements of S
– ExtractMin(S) returns and removes the element of S 

with the smallest key
– ModifyKey(S,x,newkey) – changes the key of x in S

• A binary heap can be used to implement a PQ
– BuildPQ – O(n)
– ExtractMin and ModifyKey – O(lg n)
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Prim’s Running Time

• Time = |V|T(ExtractMin) + O(|E|)T(ModifyKey)
• Time = O(|V| lg|V| + |E| lg|V|) = O(|E| lg|V|)   

O(|V| lg|V|
+|E| )

O(1) amortizedO(lg |V|)Fibonacci 
heap

O(|E| lg|V| )O(lg |V|)O(lg |V|)binary heap
O(|V| 2)O(1)O(|V|)array 
TotalT(DecreaseKey)T(ExtractMin)Q
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Kruskal's Algorithm

• Edge based algorithm
• Add the edges one at a time, in increasing 

weight order 
• The algorithm maintains A – a forest of trees. 

An edge is accepted it if connects vertices of 
distinct trees

• We need an ADT that maintains a partition, 
i.e.,a collection of disjoint sets
– MakeSet(S,x): S ← S ∪ {{x}}
– Union(Si,Sj): S ← S – {Si,Sj} ∪ {Si ∪ Sj}
– FindSet(S, x): returns unique Si ∈ S, where x ∈

Si
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Kruskal's Algorithm

• The algorithm keeps adding the cheapest edge 
that connects two trees of the forest

MST-Kruskal(G,w)
01 A ← ∅
02 for each vertex v ∈ V[G] do
03    Make-Set(v)
04 sort the edges of E by non-decreasing weight w
05 for each edge (u,v)∈ E, in order by non-

decreasing weight do
06   if Find-Set(u) ≠ Find-Set(v) then
07      A ← A ∪ {(u,v)}
08      Union(u,v)
09 return A
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Kruskal's Algorithm: example
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Kruskal's Algorithm: example (2)
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Kruskal's Algorithm: example (3)
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Kruskal's Algorithm: example (4)
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Kruskal running time

• Initialization O(|V|) time
• Sorting the edges Θ(|E| lg |E|) = Θ(|E| lg |V|) 

(why?)
• O(|E|) calls to FindSet 
• Union costs

– Let t(v) – the number of times v is moved to a new 
cluster

– Each time a vertex is moved to a new cluster the 
size of the cluster containing the vertex at least 
doubles: t(v) ≤ log |V|

– Total time spent doing Union
• Total time: O(|E| lg |V|) 

( ) log
v V

t v V V
∈

≤∑
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Next: Graph Algorithms

• Graphs
• Graph representations

– adjacency list
– adjacency matrix

• Traversing graphs
– Breadth-First Search
– Depth-First Search
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Graph Searching Algorithms

• Systematic search of every edge and vertex of 
the graph

• Graph G = (V,E) is either directed or undirected
• Today's algorithms assume an adjacency list 

representation
• Applications

– Compilers
– Graphics
– Maze-solving
– Mapping
– Networks: routing, searching, clustering, etc.
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Breadth First Search

• A Breadth-First Search (BFS) traverses a
connected component of a graph, and in doing 
so defines a spanning tree with several useful 
properties

• BFS in an undirected graph G is like wandering 
in a labyrinth with a string.

• The starting vertex s, it is assigned a distance 0.
• In the first round, the string is unrolled the length

of one edge, and all of the edges that are only 
one edge away from the anchor are visited
(discovered), and assigned distances of 1
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Breadth First Search (2)

• In the second round, all the new edges that 
can be reached by unrolling the string 2 
edges are visited and assigned a distance of 
2

• This continues until every vertex has been
assigned a level

• The label of any vertex v corresponds to the 
length of the shortest path (in terms of edges) 
from s to v
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Breadth First Search: example
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Breadth First Search: example
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Breadth First Search: example
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BFS Algorithm

BFS(G,s)
01 for each vertex u ∈ V[G]-{s}
02    color[u] ← white
03    d[u] ← ∞
04    π[u] ← NIL
05 color[s] ← gray
06 d[s] ← 0
07 π[u] ← NIL
08 Q ← {s}
09 while Q ≠ ∅ do
10    u ← head[Q]
11    for each v ∈ Adj[u] do
12       if color[v] = white then
13          color[v] ← gray
14          d[v] ← d[u] + 1
15          π[v] ← u
16          Enqueue(Q,v)
17    Dequeue(Q)
18    color[u] ← black

Init all 
vertices

Init BFS 
with s

Handle all u’s 
children 
before 
handling any 
children of 
children
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BFS Algorithm: running time

• Given a graph G = (V,E)
– Vertices are enqueued if there color is white
– Assuming that en- and dequeuing takes O(1) time the 

total cost of this operation is O(|V|)
– Adjacency list of a vertex is scanned when the vertex 

is dequeued (and only then…)
– The sum of the lengths of all lists is O(|E|). 

Consequently, O(|E|) time is spent on scanning them
– Initializing the algorithm takes O(|V|)

• Total running time O(|V|+|E|) (linear in the size 
of the adjacency list representation of G)
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BFS Algorithm: properties

• Given a graph G = (V,E), BFS discovers all 
vertices reachable from a source vertex s

• It computes the shortest distance to all 
reachable vertices

• It computes a breadth-first tree that contains 
all such reachable vertices

• For any vertex v reachable from s, the path in 
the breadth first tree from s to v, corresponds 
to a shortest path in G
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BFS Tree

• Predecessor subgraph of G

• Gp is a breadth-first tree
– Vp consists of the vertices reachable from s, and
– for all v ∈ Vp, there is a unique simple path from s

to v in Gp that is also a shortest path from s to v in 
G

• The edges in Gp are called tree edges

{ } { }
{ }

( , )
: [ ]

( [ ], ) : { }

G V E
V v V v NIL s

E v v E v V s

π π π

π

π π

=

= ∈ π ≠ ∪

= π ∈ ∈ −
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Depth-first search (DFS)

• A depth-first search (DFS) in an undirected 
graph G is like wandering in a labyrinth with a 
string and a can of paint
– We start at vertex s, tying the end of our string to 

the point and painting s “visited (discovered)”. 
Next we label s as our current vertex called u

– Now, we travel along an arbitrary edge (u,v).
– If edge (u,v) leads us to an already visited vertex v

we return to u
– If vertex v is unvisited, we unroll our string, move 

to v, paint v “visited”, set v as our current vertex, 
and repeat the previous steps
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Depth-first search (2)

• Eventually, we will get to a point where all 
incident edges on u lead to visited vertices

• We then backtrack by unrolling our string to a 
previously visited vertex v. Then v becomes our 
current vertex and we repeat the previous steps

• Then, if all incident edges on v lead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we 
have traveled, finding and exploring 
unexplored edges, and repeating the procedure
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Depth-first search algorithm

• Initialize – color all vertices white
• Visit each and every white vertex using DFS-

Visit
• Each call to DFS-Visit(u) roots a new tree of 

the depth-first forest at vertex u
• A vertex is white if it is undiscovered
• A vertex is gray if it has been discovered but 

not all of its edges have been discovered
• A vertex is black after all of its adjacent 

vertices have been discovered (the adj. list 
was examined completely)
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Init all 
vertices

Depth-first search algorithm (2)

Visit all 
children 
recursively
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Depth-first search example
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Depth-first search example (2)
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Depth-first search example (3)
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Depth-first search example (4)

• When DFS returns, every vertex u is 
assigned
– a discovery time d[u], and a finishing time f[u]

• Running time
– the loops in DFS take time Θ(V) each, excluding the 

time to execute DFS-Visit
– DFS-Visit is called once for every vertex

• its only invoked on white vertices, and
• paints the vertex gray immediately

– for each DFS-visit a loop interates over all Adj[v] 
– the total cost for DFS-Visit is Θ(E)

– the running time of DFS is Θ(V+E) 

[ ] ( )
v V

Adj v E
∈

= Θ∑
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Predecessor Subgraph

• Defined slightly different from BFS

• The PD subgraph of a depth-first search 
forms a depth-first forest composed of 
several depth-first trees

• The edges in Gp are called tree edges

{ }
( , )
( [ ], ) :  and [ ] NIL

G V E
E v v E v V v

π π

π

=

= π ∈ ∈ π ≠
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DFS Timestamping

• The DFS algorithm maintains a 
monotonically increasing global clock
– discovery time d[u] and finishing time f[u]

• For every vertex u, the inequality d[u] < 
f[u] must hold
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DFS Timestamping

• Vertex u is
– white before time d[u]
– gray between time d[u] and time f[u], and
– black thereafter

• Notice the structure througout the 
algorithm. 
– gray vertices form a linear chain
– correponds to a stack of vertices that have 

not been exhaustively explored (DFS-Visit 
started but not yet finished)



7/16/2013 CSE 3101 52

DFS Parenthesis Theorem

• Discovery and finish times have parenthesis 
structure
– represent discovery of u with left parenthesis "(u"
– represent finishin of u with right parenthesis "u)"
– history of discoveries and finishings makes a well-

formed expression (parenthesis are properly 
nested)

• Intuition for proof: any two intervals are either 
disjoint or enclosed
– Overlaping intervals would mean finishing 

ancestor, before finishing descendant or starting 
descendant without starting ancestor 


