
7/16/2013 CSE 3101 1

Next: Graph Algorithms

• Graphs Ch 22
• Graph representations

– adjacency list
– adjacency matrix

• Minimum Spanning Trees Ch 23
• Traversing graphs

– Breadth-First Search
– Depth-First Search

7/16/2013 CSE 3101 2

Graphs – Definition

• A graph G = (V,E) is composed of:
– V: set of vertices
– E⊂ V× V: set of edges connecting the vertices

• An edge e = (u,v) is a pair of vertices
• (u,v) is ordered, if G is a directed graph

7/16/2013 CSE 3101 3

Graph Terminology

• adjacent vertices: connected by an edge
• degree (of a vertex): # of adjacent vertices

• path: sequence of vertices v1 ,v2 ,. . .vk such
that consecutive vertices vi and vi+1 are
adjacent

Since adjacent vertices each
count the adjoining edge, it will
be counted twice

deg() 2(# of edges)
v V

v
∈

=∑

7/16/2013 CSE 3101 4

Graph Terminology (2)

• simple path: no repeated vertices

7/16/2013 CSE 3101 5

• cycle: simple path, except that the last vertex
is the same as the first vertex

• connected graph: any two vertices are
connected by some path

Graph Terminology (3)

7/16/2013 CSE 3101 6

Graph Terminology (4)

• subgraph: subset of vertices and edges
forming a graph

• connected component: maximal connected
subgraph. E.g., the graph below has 3
connected components

7/16/2013 CSE 3101 7

Graph Terminology (5)

• (free) tree - connected graph without cycles
• forest - collection of trees

7/16/2013 CSE 3101 8

Data Structures for Graphs

• The Adjacency list of a vertex v: a sequence
of vertices adjacent to v

• Represent the graph by the adjacency lists of
all its vertices

Space (deg()) ()n v n m= Θ + = Θ +∑

7/16/2013 CSE 3101 9

• Adjacency matrix
• Matrix M with entries for all pairs of vertices
• M[i,j] = true – there is an edge (i,j) in the graph
• M[i,j] = false – there is no edge (i,j) in the graph
• Space = O(n2)

Data Structures for Graphs

7/16/2013 CSE 3101 10

Spanning Tree

• A spanning tree of G is a subgraph which
– is a tree
– contains all vertices of G

7/16/2013 CSE 3101 11

Minimum Spanning Trees

• Undirected, connected
graph G = (V,E)

• Weight function W: E → R
(assigning cost or length or
other values to edges)

(,)
() (,)

u v T
w T w u v

∈

= ∑

Spanning tree: tree that connects all vertices
Minimum spanning tree: tree that connects all
the vertices and minimizes

7/16/2013 CSE 3101 12

Optimal Substructure

• MST T

• Removing the edge (u,v) partitions T into T1 and
T2

• We claim that T1 is the MST of G1=(V1,E1), the
subgraph of G induced by vertices in T1

• Also, T2 is the MST of G2

1 2() (,) () ()w T w u v w T w T= + +

T1

T2

7/16/2013 CSE 3101 13

Greedy Choice

• Greedy choice property: locally optimal (greedy)
choice yields a globally optimal solution

• Theorem
– Let G=(V, E), and let S ⊆ V and
– let (u,v) be min-weight edge in G connecting

S to V – S
– Then (u,v) ∈ T – some MST of G

7/16/2013 CSE 3101 14

Greedy Choice (2)

• Proof
– suppose (u,v) ∉ T
– look at path from u to v in T
– swap (x, y) – the first edge on path from u to v in T that

crosses from S to V – S
– this improves T – contradiction (T supposed to be MST)

u v

x
y

S V-S

7/16/2013 CSE 3101 15

Generic MST Algorithm

Generic-MST(G, w)
1 A←∅ // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 Find an edge (u,v) that is safe for A
4 A←A∪{(u,v)}
5 return A

Generic-MST(G, w)
1 A←∅ // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3 Find an edge (u,v) that is safe for A
4 A←A∪{(u,v)}
5 return A

Safe edge – edge that does not destroy A’s property

MoreSpecific-MST(G, w)
1 A←∅ // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that respects A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A←A∪{(u,v)}
5 return A

MoreSpecific-MST(G, w)
1 A←∅ // Contains edges that belong to a MST
2 while A does not form a spanning tree do
3.1 Make a cut (S, V-S) of G that respects A
3.2 Take the min-weight edge (u,v) connecting S to V-S
4 A←A∪{(u,v)}
5 return A

7/16/2013 CSE 3101 16

Prim’s Algorithm

• Vertex based algorithm
• Grows one tree T, one vertex at a time
• A cloud covering the portion of T

already computed
• Label the vertices v outside the cloud

with key[v] – the minimum weight of an
edge connecting v to a vertex in the
cloud, key[v] = ∞, if no such edge exists

7/16/2013 CSE 3101 17

MST-Prim(G,w,r)
01 Q ← V[G] // Q – vertices out of T
02 for each u ∈ Q
03 key[u] ← ∞
04 key[r] ← 0
05 π[r] ← NIL
06 while Q ≠ ∅ do
07 u ← ExtractMin(Q) // making u part of T
08 for each v ∈ Adj[u] do
09 if v ∈ Q and w(u,v) < key[v] then
10 π[v] ← u
11 key[v] ← w(u,v)

Prim’s Algorithm (2)

updating
keys

7/16/2013 CSE 3101 18

Prim Example

7/16/2013 CSE 3101 19

Prim Example (2)

7/16/2013 CSE 3101 20

Prim Example (3)

7/16/2013 CSE 3101 21

Priority Queues

• A priority queue is a data structure for
maintaining a set S of elements, each with an
associated value called key

• We need PQ to support the following operations
– BuildPQ(S) – initializes PQ to contain elements of S
– ExtractMin(S) returns and removes the element of S

with the smallest key
– ModifyKey(S,x,newkey) – changes the key of x in S

• A binary heap can be used to implement a PQ
– BuildPQ – O(n)
– ExtractMin and ModifyKey – O(lg n)

7/16/2013 CSE 3101 22

Prim’s Running Time

• Time = |V|T(ExtractMin) + O(|E|)T(ModifyKey)
• Time = O(|V| lg|V| + |E| lg|V|) = O(|E| lg|V|)

O(|V| lg|V|
+|E|)

O(1) amortizedO(lg |V|)Fibonacci
heap

O(|E| lg|V|)O(lg |V|)O(lg |V|)binary heap
O(|V| 2)O(1)O(|V|)array
TotalT(DecreaseKey)T(ExtractMin)Q

7/16/2013 CSE 3101 23

Kruskal's Algorithm

• Edge based algorithm
• Add the edges one at a time, in increasing

weight order
• The algorithm maintains A – a forest of trees.

An edge is accepted it if connects vertices of
distinct trees

• We need an ADT that maintains a partition,
i.e.,a collection of disjoint sets
– MakeSet(S,x): S ← S ∪ {{x}}
– Union(Si,Sj): S ← S – {Si,Sj} ∪ {Si ∪ Sj}
– FindSet(S, x): returns unique Si ∈ S, where x ∈

Si

7/16/2013 CSE 3101 24

Kruskal's Algorithm

• The algorithm keeps adding the cheapest edge
that connects two trees of the forest

MST-Kruskal(G,w)
01 A ← ∅
02 for each vertex v ∈ V[G] do
03 Make-Set(v)
04 sort the edges of E by non-decreasing weight w
05 for each edge (u,v)∈ E, in order by non-

decreasing weight do
06 if Find-Set(u) ≠ Find-Set(v) then
07 A ← A ∪ {(u,v)}
08 Union(u,v)
09 return A

7/16/2013 CSE 3101 25

Kruskal's Algorithm: example

7/16/2013 CSE 3101 26

Kruskal's Algorithm: example (2)

7/16/2013 CSE 3101 27

Kruskal's Algorithm: example (3)

7/16/2013 CSE 3101 28

Kruskal's Algorithm: example (4)

7/16/2013 CSE 3101 29

Kruskal running time

• Initialization O(|V|) time
• Sorting the edges Θ(|E| lg |E|) = Θ(|E| lg |V|)

(why?)
• O(|E|) calls to FindSet
• Union costs

– Let t(v) – the number of times v is moved to a new
cluster

– Each time a vertex is moved to a new cluster the
size of the cluster containing the vertex at least
doubles: t(v) ≤ log |V|

– Total time spent doing Union
• Total time: O(|E| lg |V|)

() log
v V

t v V V
∈

≤∑

7/16/2013 CSE 3101 30

Next: Graph Algorithms

• Graphs
• Graph representations

– adjacency list
– adjacency matrix

• Traversing graphs
– Breadth-First Search
– Depth-First Search

7/16/2013 CSE 3101 31

Graph Searching Algorithms

• Systematic search of every edge and vertex of
the graph

• Graph G = (V,E) is either directed or undirected
• Today's algorithms assume an adjacency list

representation
• Applications

– Compilers
– Graphics
– Maze-solving
– Mapping
– Networks: routing, searching, clustering, etc.

7/16/2013 CSE 3101 32

Breadth First Search

• A Breadth-First Search (BFS) traverses a
connected component of a graph, and in doing
so defines a spanning tree with several useful
properties

• BFS in an undirected graph G is like wandering
in a labyrinth with a string.

• The starting vertex s, it is assigned a distance 0.
• In the first round, the string is unrolled the length

of one edge, and all of the edges that are only
one edge away from the anchor are visited
(discovered), and assigned distances of 1

7/16/2013 CSE 3101 33

Breadth First Search (2)

• In the second round, all the new edges that
can be reached by unrolling the string 2
edges are visited and assigned a distance of
2

• This continues until every vertex has been
assigned a level

• The label of any vertex v corresponds to the
length of the shortest path (in terms of edges)
from s to v

7/16/2013 CSE 3101 34

Breadth First Search: example

0∞

∞ ∞ ∞ ∞

r s u
∞

t
∞

wv yx
0
sQ

01

∞ 1 ∞ ∞

r s u
∞

t
∞

wv yx
1
w

1
rQ

01

∞ 1 2 ∞

r s u
∞

t
2

wv yx
2
t

1
r

2
xQ

01

2 1 2 ∞

r s u
∞

t
2

wv yx
2
x

2
t

2
vQ

7/16/2013 CSE 3101 35

Breadth First Search: example

01

2 1 2 ∞

r s u
3

t
2

wv yx
2
v

2
x

3
uQ

01

2 1 2 3

r s u
3

t
2

wv yx
3
u

2
v

3
yQ

01

2 1 2 3

r s u
3

t
2

wv yx
3
y

3
uQ

01

2 1 2 3

r s u
3

t
2

wv yx
3
yQ

7/16/2013 CSE 3101 36

Breadth First Search: example

01

2 1 2 3

r s u
3

t
2

wv yx

-Q

7/16/2013 CSE 3101 37

BFS Algorithm

BFS(G,s)
01 for each vertex u ∈ V[G]-{s}
02 color[u] ← white
03 d[u] ← ∞
04 π[u] ← NIL
05 color[s] ← gray
06 d[s] ← 0
07 π[u] ← NIL
08 Q ← {s}
09 while Q ≠ ∅ do
10 u ← head[Q]
11 for each v ∈ Adj[u] do
12 if color[v] = white then
13 color[v] ← gray
14 d[v] ← d[u] + 1
15 π[v] ← u
16 Enqueue(Q,v)
17 Dequeue(Q)
18 color[u] ← black

Init all
vertices

Init BFS
with s

Handle all u’s
children
before
handling any
children of
children

7/16/2013 CSE 3101 38

BFS Algorithm: running time

• Given a graph G = (V,E)
– Vertices are enqueued if there color is white
– Assuming that en- and dequeuing takes O(1) time the

total cost of this operation is O(|V|)
– Adjacency list of a vertex is scanned when the vertex

is dequeued (and only then…)
– The sum of the lengths of all lists is O(|E|).

Consequently, O(|E|) time is spent on scanning them
– Initializing the algorithm takes O(|V|)

• Total running time O(|V|+|E|) (linear in the size
of the adjacency list representation of G)

7/16/2013 CSE 3101 39

BFS Algorithm: properties

• Given a graph G = (V,E), BFS discovers all
vertices reachable from a source vertex s

• It computes the shortest distance to all
reachable vertices

• It computes a breadth-first tree that contains
all such reachable vertices

• For any vertex v reachable from s, the path in
the breadth first tree from s to v, corresponds
to a shortest path in G

7/16/2013 CSE 3101 40

BFS Tree

• Predecessor subgraph of G

• Gp is a breadth-first tree
– Vp consists of the vertices reachable from s, and
– for all v ∈ Vp, there is a unique simple path from s

to v in Gp that is also a shortest path from s to v in
G

• The edges in Gp are called tree edges

{ } { }
{ }

(,)
: []

([],) : { }

G V E
V v V v NIL s

E v v E v V s

π π π

π

π π

=

= ∈ π ≠ ∪

= π ∈ ∈ −

7/16/2013 CSE 3101 41

Depth-first search (DFS)

• A depth-first search (DFS) in an undirected
graph G is like wandering in a labyrinth with a
string and a can of paint
– We start at vertex s, tying the end of our string to

the point and painting s “visited (discovered)”.
Next we label s as our current vertex called u

– Now, we travel along an arbitrary edge (u,v).
– If edge (u,v) leads us to an already visited vertex v

we return to u
– If vertex v is unvisited, we unroll our string, move

to v, paint v “visited”, set v as our current vertex,
and repeat the previous steps

7/16/2013 CSE 3101 42

Depth-first search (2)

• Eventually, we will get to a point where all
incident edges on u lead to visited vertices

• We then backtrack by unrolling our string to a
previously visited vertex v. Then v becomes our
current vertex and we repeat the previous steps

• Then, if all incident edges on v lead to visited
vertices, we backtrack as we did before. We
continue to backtrack along the path we
have traveled, finding and exploring
unexplored edges, and repeating the procedure

7/16/2013 CSE 3101 43

Depth-first search algorithm

• Initialize – color all vertices white
• Visit each and every white vertex using DFS-

Visit
• Each call to DFS-Visit(u) roots a new tree of

the depth-first forest at vertex u
• A vertex is white if it is undiscovered
• A vertex is gray if it has been discovered but

not all of its edges have been discovered
• A vertex is black after all of its adjacent

vertices have been discovered (the adj. list
was examined completely)

7/16/2013 CSE 3101 44

Init all
vertices

Depth-first search algorithm (2)

Visit all
children
recursively

7/16/2013 CSE 3101 45

Depth-first search example

u

x

v w

y z

1/
u

x

v w

y z

1/ 2/
u

x

v w

y z

1/ 2/

3/

u

x

v w

y z

1/ 2/

3/4/

u

x

v w

y z

1/ 2/

3/4/

B

u

x

v w

y z

1/ 2/

3/4/5

B

7/16/2013 CSE 3101 46

Depth-first search example (2)

u

x

v w

y z

1/ 2/

3/64/5

B

u

x

v w

y z

1/ 2/7

3/64/5

B

u

x

v w

y z

1/ 2/7

3/64/5

BF

u

x

v w

y z

1/8 2/7

3/64/5

BF

u

x

v w

y z

1/8 2/7

3/64/5

BF
9/

u

x

v w

y z

1/8 2/7

3/64/5

BF
9/

C

7/16/2013 CSE 3101 47

Depth-first search example (3)

u

x

v w

y z

1/8 2/7

3/64/5

BF
9/

C

10/

u

x

v w

y z

1/8 2/7

3/64/5

BF
9/

C

10/ B

u

x

v w

y z

1/8 2/7

3/64/5

BF
9/

C

10/11 B

u

x

v w

y z

1/8 2/7

3/64/5

BF
9/12

C

10/11 B

7/16/2013 CSE 3101 48

Depth-first search example (4)

• When DFS returns, every vertex u is
assigned
– a discovery time d[u], and a finishing time f[u]

• Running time
– the loops in DFS take time Θ(V) each, excluding the

time to execute DFS-Visit
– DFS-Visit is called once for every vertex

• its only invoked on white vertices, and
• paints the vertex gray immediately

– for each DFS-visit a loop interates over all Adj[v]
– the total cost for DFS-Visit is Θ(E)

– the running time of DFS is Θ(V+E)

[] ()
v V

Adj v E
∈

= Θ∑

7/16/2013 CSE 3101 49

Predecessor Subgraph

• Defined slightly different from BFS

• The PD subgraph of a depth-first search
forms a depth-first forest composed of
several depth-first trees

• The edges in Gp are called tree edges

{ }
(,)
([],) : and [] NIL

G V E
E v v E v V v

π π

π

=

= π ∈ ∈ π ≠

7/16/2013 CSE 3101 50

DFS Timestamping

• The DFS algorithm maintains a
monotonically increasing global clock
– discovery time d[u] and finishing time f[u]

• For every vertex u, the inequality d[u] <
f[u] must hold

7/16/2013 CSE 3101 51

DFS Timestamping

• Vertex u is
– white before time d[u]
– gray between time d[u] and time f[u], and
– black thereafter

• Notice the structure througout the
algorithm.
– gray vertices form a linear chain
– correponds to a stack of vertices that have

not been exhaustively explored (DFS-Visit
started but not yet finished)

7/16/2013 CSE 3101 52

DFS Parenthesis Theorem

• Discovery and finish times have parenthesis
structure
– represent discovery of u with left parenthesis "(u"
– represent finishin of u with right parenthesis "u)"
– history of discoveries and finishings makes a well-

formed expression (parenthesis are properly
nested)

• Intuition for proof: any two intervals are either
disjoint or enclosed
– Overlaping intervals would mean finishing

ancestor, before finishing descendant or starting
descendant without starting ancestor

