
7/30/2013 CSE 3101 1

Intractability

• Tractable and intractable problems
– What is a ”reasonable” running time?
– NP problems, examples
– NP-complete problems and polynomial

reducability
• There are many practically important problems that

have not yielded algorithms with sub-exponential
worst case running time even with years of effort.

7/30/2013 CSE 3101 2

Traveling Salesman Problem

• A traveling salesperson needs to visit n cities
• Is there a route of at most d length? (decision

problem)
– Optimization-version asks to find a shortest cycle

visiting all vertices once in a weighted graph

7/30/2013 CSE 3101 3

TSP Algorithms

• Naive solutions take n! time in worst-case,
where n is the number of edges of the graph

• No polynomial-time algorithms are known
– TSP is an NP-complete problem

• Longest Path problem between A and B in a
weighted graph is also NP-complete
– Remember the running time for the shortest path

problem

7/30/2013 CSE 3101 4

Reasonable vs. Unreasonable

Growth rates

1

1E+10

1E+20

1E+30

1E+40

2 4 8 16 32 64 128 256 512 1024

5n
n^3
n^5
1.2^n
2^n
n^n

Number of
microseconds
since “Big-
Bang”

7/30/2013 CSE 3101 5

Reasonable vs. Unreasonable

a 728 digit-
number of
centuries

a 185 digit-
number of
centuries

a 70 digit-
number of
centuries

3.3 trillion
years

2.8
hoursnn

a 75 digit-
number of
centuries

400 trillion
centuries

35.7
years

1
second

1/1000
second2n

28.1
days

2.8
hours

5.2
minutes

3.2
seconds

1/10
secondn5

9/100
second

1/100
second

1/400
second

1/2,500
second

1/10,000
secondn2

300100502010function/
n

Ex
po

ne
nt

ia
l

Po
ly

no
m

ia
l

7/30/2013 CSE 3101 6

Reasonable vs. Unreasonable

• ”Good”, reasonable algorithms
– algorithms bound by a polynomial function nk

– Tractable problems
• ”Bad”, unreasonable algorithms

– algorithms whose running time is above nk

– Intractable problems

intractable
problems

tractable
problems

problems not admitting
reasonable algorithms

problems admitting reasonable
(polynomial-time) algorithms

7/30/2013 CSE 3101 7

Counterpoints?

• Computers become faster every day
– insignificant (a constant) compared to exp.

running time
• Maybe the TSP is just one specific

problem, we could simply ignore?
– the TSP falls into a category of problems

called NPC (NP complete) problems
(~1000 problems)

– all admit unreasonable solutions
– not known to admit reasonable ones…

7/30/2013 CSE 3101 8

Coloring Problem (COLOR)

• 3-color
– given a planar map, can it be colored using

3 colors so that no adjacent regions have
the same color

Find an error! =>

7/30/2013 CSE 3101 9

Coloring Problem (2)

NO instance
Impossible to 3-color Nevada
and bordering states!

7/30/2013 CSE 3101 10

Coloring Problem (3)

• Any map can be 4-colored
• Maps that contain no points that are the

junctions of an odd number of states
can be 2-colored

• No polynomial algorithms are known to
determine whether a map can be 3-
colored – it’s an NP-complete problem

7/30/2013 CSE 3101 11

Determining Truth (SAT)

• Determine the truth or falsity of logical
sentences in a simple logical formalism called
propositional calculus

• Using the logical connectives (&-and, -or, ~-
not, -implies) we compose expressions such
as the following
~(E F) & (F (D ~E))

• The algorithmic problem calls for determining
the satisfiability of such sentences
– e.g., E = true, D and F = false

7/30/2013 CSE 3101 12

Determining Truth (SAT)

 Exponential time algorithm on n = the number
of distinct elementary assertions ((2n))

 Best known solution, problem is in NP-complete
class!

7/30/2013 CSE 3101 13

CLIQUE

• Given n people and their pairwise
relationships, is there a group of s
people such that every pair in the
group knows each other
– people: a, b, c, …, k
– friendships: (a,e), (a,f),…
– clique size: s = 4?
– YES, {b, d, i, h} is a

certificate!

7/30/2013 CSE 3101 14

P

• Definition of P:
– Set of all decision problems solvable in polynomial

time on a deterministic Turing machine
• Examples:

– SHORTEST PATH: Is the shortest path between u
and v in a graph shorter than k?

– RELPRIME: Are the integers x and y relatively
prime?

• YES: (x, y) = (34, 39).

– MEDIAN: Given integers x1 , …, xn , is the median
value < M?

• YES: (M, x1 , x2 , x3 , x4 , x5) = (17, 2, 5, 17, 22, 104)

7/30/2013 CSE 3101 15

P(2)

• P is the set of all decision problems
solvable in polynomial time on REAL
computers.

7/30/2013 CSE 3101 16

Short Certificates

• To find a solution for an NPC problem, we
seem to be required to try out exponential
amounts of partial solutions

• Failing in extending a partial solution requires
backtracking

• However, once we found a solution,
convincing someone of it is easy, if we keep a
proof, i.e., a certificate

• The problem is finding an answer
(exponential), but not verifying a potential
solution (polynomial)

7/30/2013 CSE 3101 17

Short Certificates (2)

7/30/2013 CSE 3101 18

On Magic Coins and Oracles

• Assume we use a magic coin in the backtracking
algorithm
– whenever it is possible to extend a partial solutions in

> 1 ways, we toss a magic coin (next city, next truth
assignment, etc.)

– the outcome of this ”act” determines further actions –
we use magical insight, supernatural powers!

• Such algorithms are termed ”non-deterministic”
– they guess which option is better, rather than

employing some deterministic procedure to go
through the alternatives

7/30/2013 CSE 3101 19

NP

• Definition of NP:
– Set of all decision problems solvable in polynomial

time on a NONDETERMINISTIC Turing machine
– Definition important because it links many

fundamental problems
• Useful alternative definition

– Set of all decision problems with efficient verification
algorithms

• efficient = polynomial number of steps on deterministic TM

– Verifier: algorithm for decision problem with extra
input

7/30/2013 CSE 3101 20

NP (2)

• NP = set of decision problems with
efficient verification algorithms

• Why doesn’t this imply that all problems
in NP can be solved efficiently?
– BIG PROBLEM: need to know certificate

ahead of time
• real computers can simulate by guessing all

possible certificates and verifying
• naïve simulation takes exponential time

unless you get "lucky"

7/30/2013 CSE 3101 21

NP-Completeness

• Informal definition of NP-hard:
– A problem with the property that if it can be

solved efficiently, then it can be used as a
subroutine to solve any other problem in
NP efficiently

• NP-complete problems are NP
problems that are NP-hard
– ”Hardest computational problems” in NP

7/30/2013 CSE 3101 22

The Main Question

• Does P = NP?
– Is the original DECISION problem as easy as

VERIFICATION?
• Most important open problem in theoretical

computer science. Clay institute of mathematics
offers one-million dolar prize!

7/30/2013 CSE 3101 23

The Main Question (2)

• If P=NP, then:
– Efficient algorithms for 3- COLOR, TSP, and

factoring.
– Cryptography is impossible on conventional

machines
– Modern banking systems will collapse

• If no, then:
– Can’t hope to write efficient algorithm for TSP

• see NP- completeness

– But maybe efficient algorithm still exists for testing
the primality of a number – i.e., there are some
problems that are NP, but not NP-complete

7/30/2013 CSE 3101 24

The Main Question (3)

• Probably no, since:
– Thousands of researchers have spent four

decades in search of polynomial algorithms
for many fundamental NP-complete
problems without success

– Consensus opinion: P NP
• But maybe yes, since:

– No success in proving P NP either

7/30/2013 CSE 3101 25

Dealing with NP-Completeness

• Hope that a worst case doesn’t occur
– Complexity theory deals with worst case behavior.

The instance(s) you want to solve may be "easy"
• TSP where all points are on a line or circle
• 13,509 US city TSP problem solved (Cook et. al., 1998)

• Change the problem
– Develop a heuristic, and hope it produces a good

solution.
– Design an approximation algorithm: algorithm that

is guaranteed to find a high- quality solution in
polynomial time

• active area of research, but not always possible

• Keep trying to prove P = NP.

7/30/2013 CSE 3101 26

The Big Picture

• It is not known whether NP problems are
tractable or intractable

• But, there exist provably intractable
problems
– Even worse – there exist problems with

running times far worse than exponential!
• More bad news: there are provably

noncomputable (undecidable) problems
– There are no (and there will not ever be!!!)

algorithms to solve these problems

7/30/2013 CSE 3101 27

Proving NP-completeness: the start…

• The World’s first NP-complete problem
• SAT is NP-complete (Cook-Levin, 196x)

7/30/2013 CSE 3101 28

Proving NP-Completeness (2)

• Each NPC problem’s faith is tightly coupled to all
the others (complete set of problems)

• Finding a polynomial time algorithm for one
NPC problem would automatically yield a
polynomial time algorithm for all NP problems

• Proving that one NP-complete problem has an
exponential lower bound woud automatically
proove that all other NP-complete problems
have exponential lower bounds

7/30/2013 CSE 3101 29

NP-Completeness (3)

• How can we prove such a statement?
• Polynomial time reduction!

– given two problems
– it is an algorithm running in polynomial time that

reduces one problem to the other such that
• given input X to the first and asking for a yes/no

answer
• we transform X into input Y to the second problem

such that its answer matches the answer of the first
problem

7/30/2013 CSE 3101 30

Reduction Example

• Reduction is a general technique for
showing that one problem is harder
(easier) than another
– For problems A and B, we can often show:

if A can be solved efficiently, then so can B
– In this case, we say B reduces to A (B is

"easier" than A, or, B cannot be ”worse”
than A)

7/30/2013 CSE 3101 31

Reduction Example (2)

• SAT reduces to CLIQUE
– Given any input to SAT, we create a

corresponding input to CLIQUE that will help us
solve the original SAT problem

– Specifically, for a SAT formula with K clauses, we
construct a CLIQUE input that has a clique of size
K if and only if the original Boolean formula is
satisfiable

– If we had an efficient algorithm for CLIQUE, we
could apply our transformation, solve the
associated CLIQUE problem, and obtain the
yes/no answer for the original SAT problem

7/30/2013 CSE 3101 32

Reduction Example (3)

• SAT reduces to CLIQUE
– Associate a person to each variable

occurrence in each clause

7/30/2013 CSE 3101 33

Reduction Example (4)

• SAT reduces to CLIQUE
– Associate a person to each

variable occurrence in each
clause

– ”Two people” know each other
except if:

• they come from the same clause
• they represent t and t’ for some

variable t

7/30/2013 CSE 3101 34

Reduction Example (5)

• SAT reduces to CLIQUE
– Two people know each other except if:

• they come from the same clause
• they represent t and t’ for some variable t

– Clique of size 4 satisfiable
assignment

• set variable in clique to ”true”
• (x, y, z) = (true, true, false)

7/30/2013 CSE 3101 35

Reduction Example (6)

• SAT reduces to CLIQUE
– Two people know each other except if:

• they come from the same clause
• they represent t and t’ for some variable t

– Clique of size 4 satisfiable assignment
– Satisfiable assignment clique of size 4

• (x, y, z) = (false, false, true)
• choose one true literal from

each clause

7/30/2013 CSE 3101 36

CLIQUE is NP-complete

• CLIQUE is NP-complete
– CLIQUE is in NP
– SAT is in NP-complete
– SAT reduces to CLIQUE

• Hundreds of problems can be shown to
be NP-complete that way…

7/30/2013 CSE 3101 37

Summary

• Thousands of problems have been proved to
be NP-complete
– ”at least as hard as any other problem in NP”
– If you find a polynomial time solution to any NP-

complete problem, P=NP
• They are believed to be intractable (i.e., no

polynomial time algorithms exist)
• Since this has not been proved, it is possible

that P=NP.
• In real life one looks for an approximation

algorithm or a different problem formulation...

