Next: Linear sorting

Q: Can we beat the €)(n log n) lower bound for
sorting?

A: In general no, but in some special cases
YES!

Ch 7: Sorting In linear time

Non-Comparison Sort — Bucket Sort

e Assumption: uniform distribution
— Input numbers are uniformly distributed in [0,1).
— Suppose input size is n.

e |dea:
— Divide [0,1) into n equal-sized subintervals (buckets).
— Distribute n numbers into buckets
— EXxpect that each bucket contains few numbers.

— Sort numbers in each bucket (insertion sort as
default).

— Then go through buckets in order, listing elements
Can be shown to run in linear-time on average

Example of BUCKET-SORT

A B
1 |78 0|/
2 117 L | ——12] ——>{17]| ./
3 .39 2 | 1211 —) 26
4 126 3| =397
5 L72 4 |7
6 1.94 5 i
7 121 6| —+—>.68|/
8 [L12 7T .72 — 78|~
9 .23 8|7
10 .68 9| —+—>.94|/
(a) (b)

Figure 8.4 The operation of BUCKET-SORT. (a) The input array A[1 .. 10]. (b) The array B[0..9]
of sorted lists (buckets) after line 5 of the algorithm. Bucket / holds values in the half-open
interval [i/10, (i + 1)/10). The sorted output consists of a concatenation in order of the lists
B{0], B[1]...., B[9].

Bucket Sort - generalizations

 What if input numbers are NOT uniformly
distributed?

« What if the distribution is not known a priori?

Non-Comparison Sort — Counting Sort

o Assumption: n input numbers are integers in the
range [0,k], k=0O(n).
e |dea:

— Determine the number of elements less than
X, for each input x.

— Place x directly in its position.

Counting Sort - pseudocode

Counting-Sort(A,B,k)
e fori<Otok

. do C[i] «-0
o forj<«-1tolength[A]
. do C[A[j]] «C[A[}j]]*+1

o /[C[i] contains number of elements equal to i.
e fori<ltok
. do C[i]=C[i]+C[i-1]
« /[C[i] contains number of elements < i.
o forj«length[A] downto 1
do B[C[A[]]] <ALl
CIADIl «C[AD]I-1

Counting Sort - example

1 2 4 5 6 7 1 2 3 4 5 6 7 8
0 1 2 3 4 5 Cl2]2 71718 0 1 2 3 4 5
ci210(213 1 Ci2121416|71|8
(a) (b) (c)
I 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
d i B B O BE I 2 3 4 56 7 8
0 1 2 3 4 5 0 1 2 BlOj0[2]2]|3i{3(3]|5
C 2141678 cli|2}(4]5 8
(d) (e) ()

Figure 8.2 The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than & = 5. (a) The array A and the auxiliary array C after
line 4. (b) The array C after line 7. (¢)—(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

Counting Sort - analysis

1. fori<Otok O(k)

2. do CJ[i] «-0 O(1)

3. forj<«-1tolength[A] e(n)

4. do C[A[]] «-C[ADL]]+1 ©(1) (e(1) (n)=6(n)
5. /I C[i] contains number of elements equal to i. ®(0)

6. fori<1ltok O(k)

7. do C[i]=C[i]+C[i-1] O(1) (6(1) ©(n)= 6(n))
8. /I C[i] contains number of elements < 1. ®(0)

9. forj «length[A] downto 1 e(n)

10. do B[C[A[]I] <-Al] ©(1) (©(1) ©(n)= 6(n)
11. CIALI] «-C[AD]]-1 ©(1) (©(1) ©(n)= 6(n)

Total cost is ®(k+n), suppose k=0O(n), then total cost is ®(n).
So, it beats the Q(n log n) lower bound!

Stable sort

e Preserves order of elements with the same
key.
 Counting sort is stable.

Crucial guestion: can counting sort be used to
sort large integers efficiently?

Radix sort

Radix-Sort(A,d)
e forie1ltod
. do use a stable sort to sort A on digit |

Analysis:
Given n d-digit numbers where each digit takes on
up to k values, Radix-Sort sorts these numbers

correctly in ®(d(n+k)) time.

1019
3075
2225
2231

Radix sort - example

2231
3075
2225
1019

1019
2225
2231
3075

1019
3075
2225
2231

1019
3075
2231
2225

1019
2225
2231
3075

1019
2231

2225
3075

Sorted!

Not
sorted!

Next: Medians and Order Statistics (Ch. 9)

Order statistics: The ith order statistic of n elements
S={a,, a,,..., a,} : i smallest elements

Minimum and maximum, Median
finding the kth largest element in an unsorted array.

Already seen:

1. k=1: ®(n) algorithm optimal.

2. Also, Heapify + Extract-max: ®(n) algorithm.
Same bounds hold for any constant k.

3. Sorting solves it for any k. ®(n log n) algorithm.

What about k=n/2? Can we do better than ®(n log n)
algorithm?

Medians and Order Statistics

To select the i smallest element of S={a,, a,,..., a,}

e Can we use PARTITION?

oif we are very lucky, we will get it in the first try!
eotherwise we should have a smaller set to recurse on.

 No guarantee of being lucky!
How can we guarantee a significantly smaller set?

The algorithm Is the most complicated divide-and-
conquer algorithm In this course!

Order Statistics

Divide n elements into | n/5 | groups of 5 elements.
Find the median of each group.

Use SELECT recursively to find the median x of the
above [n/5 | medians.

Partition using x as pivot, and find position k of x.
If iI=K return
else recurse on the appropriate subarray.

What kind of split does this produce?

The Way to Select x

At least (3n/10)-6 elements <x Divide elements into | n/5 | groups

of 5 elements each.
Find the median of each group
Find the median of the medians

\
At least (3n/10)-6 elements >X

T

Figure 9.1 Analysis of the algorithm SELECT. The n elements are represented by small circles,
and each group occupies a column. The medians of the groups are whitened, and the median-of-
medians x is labeled. (When finding the median of an even number of elements, we use the lower
median.) Arrows are drawn from larger elements to smaller, from which it can be seen that 3 out
of every full group of 5 elements to the right of x are greater than x, and 3 out of every group
of 5 elements to the left of x are less than x. The elements greater than x are shown on a shaded
background.

Analysis of SELECT

o Steps 1,2,4 take O(n),
« Step 3 takes T(n/5]).
e Letus see step 5:
- At least half of medians in step 2 are > X, thus at least
[1/2n/511-2 groups contribute 3 elements which are > x.
i.e, 3(1/21n/5]1-2) > (3n/10)-6.

- Similarly, the number of elements < x is also at least
(3n/10)-6.

— Thus, |S,| Is at most (7n/10)+6, similarly for |S;|.

— Thus SELECT in step 5 is called recursively on at most
(7n/10)+6 elements.

» Recurrence Is:
T(n)= { O(1) if n< 140
T(n/5)+T(7n/10+6)+0O(n) if n >140

Solve recurrence by substitution

e Suppose T(n) < cn, for some c.
e T(n) <cl|n/5+ c(7n/10+6) + an
<cn/5+ ¢ + 7/10cn+6¢ + an
= 9/10cn+an+7/c
=cn+(-cn/10+an+7c)
— Which is at most cn if -cn/10+an+7c¢<0.
—l.e., ¢ 210a(n/(n-70)) when n>70.

— So select n=140, and then ¢ >20a.
Note: n may not be 140, any integer >70 is OK.

Implication for Quicksort

» \Worst case improves to O(n log n)
BUT...

Test your understanding

1. Problem 9.3-7: Describe an O(n) algorithm
that, given a set S of n distinct numbers and a
positive integer k <= n, determines the k
numbers in S that are closest to the median of
S.

2. Problem 9.3-8: Let X[1..n], Y[1..n] be two
sorted arrays. Give an O(Ilg n) algorithm to
find the median of all 2n elements in arrays
X,Y.

Next: dynamic programming

(no It’s not a new programming language or
paradigm!)

