
Next: Linear sorting

Q: Can we beat the (n log n) lower bound for 
sorting?

A: In general no, but in some special cases 
YES! 

Ch 7: Sorting in linear time



Non-Comparison Sort – Bucket Sort

• Assumption: uniform distribution 
– Input numbers are uniformly distributed in [0,1).
– Suppose input size is n.

• Idea:
– Divide [0,1) into n equal-sized subintervals (buckets).
– Distribute n numbers into buckets
– Expect that each bucket contains few numbers.
– Sort numbers in each bucket (insertion sort as 

default).
– Then go through buckets in order, listing elements
Can be shown to run in linear-time on average



Example of BUCKET-SORT



Bucket Sort - generalizations

• What if input numbers are NOT uniformly 
distributed?

• What if the distribution is not known a priori?



Non-Comparison Sort – Counting Sort

• Assumption: n input numbers are integers in the 
range [0,k], k=O(n).

• Idea: 
– Determine the number of elements less than 

x, for each input x.
– Place x directly in its position.



Counting Sort - pseudocode

Counting-Sort(A,B,k)
• for i0 to k
• do C[i] 0 
• for j 1 to length[A]
• do C[A[j]] C[A[j]]+1
• // C[i] contains number of elements equal to i.
• for i 1 to k
• do C[i]=C[i]+C[i-1]
• // C[i] contains number of elements  i.
• for j length[A] downto 1
• do B[C[A[j]]] A[j]
• C[A[j]] C[A[j]]-1



Counting Sort - example



Counting Sort - analysis

1. for i0 to k (k)
2. do C[i] 0 (1)
3. for j 1 to length[A] (n)
4. do C[A[j]] C[A[j]]+1 (1) ((1) (n)= (n))

5. // C[i] contains number of elements equal to i.  (0)
6. for i 1 to k (k)
7. do C[i]=C[i]+C[i-1] (1) ((1) (n)= (n))

8. // C[i] contains number of elements  i. (0)
9. for j length[A] downto 1 (n)
10. do B[C[A[j]]] A[j] (1) ((1) (n)= (n))

11. C[A[j]] C[A[j]]-1 (1) ((1) (n)= (n))

Total cost is (k+n), suppose k=O(n), then total cost is (n). 
So, it beats the (n log n) lower bound!



Stable sort

• Preserves order of elements with the same 
key.

• Counting sort is stable.

Crucial question: can counting sort be used to 
sort large integers efficiently?



Radix sort

Radix-Sort(A,d)
• for i1 to d
• do use a stable sort to sort A on digit i

Analysis:
Given n d-digit numbers where each digit takes on 

up to k values, Radix-Sort sorts these numbers 
correctly in (d(n+k)) time.



Radix sort - example

1019
3075
2225
2231

2231
3075
2225
1019

1019
2225
2231
3075

1019
3075
2225
2231

Sorted!

1019
2231
2225 
3075

1019
2225
2231
3075

1019
3075
2231
2225

Not 
sorted!



Next: Medians and Order Statistics (Ch. 9)

Order statistics: The ith order statistic of n elements 
S={a1, a2,…, an} : ith smallest elements
•Minimum and maximum, Median
•finding the kth largest element in an unsorted array. 

Already seen:

1. k=1: (n) algorithm optimal.
2. Also, Heapify + Extract-max: (n) algorithm.

Same bounds hold for any constant k. 
3. Sorting solves it for any k. (n log n) algorithm.

What about k=n/2? Can we do better than (n log n) 
algorithm?



Medians and Order Statistics

To select the ith smallest element of S={a1, a2,…, an}
• Can we use PARTITION?

•if we are very lucky, we will get it in the first try!
•otherwise we should have a smaller set to recurse on.

• No guarantee of being lucky!
How can we guarantee a significantly smaller set?

The algorithm is the most complicated divide-and-
conquer algorithm in this course!



Order Statistics

1. Divide n elements into n/5 groups of 5 elements.
2. Find the median of each group. 
3. Use SELECT recursively to find the median x of the 

above n/5 medians.
4. Partition using x as pivot, and find position k of x.
5. If i=k return 

else recurse on the appropriate subarray.

What kind of split does this produce?



The Way to Select x

Divide elements into n/5 groups
of 5 elements each.
Find the median of each group
Find the median of the medians

At least (3n/10)-6 elements >x

At least (3n/10)-6 elements <x



Analysis of SELECT

• Steps 1,2,4 take O(n), 
• Step 3 takes  T(n/5).
• Let us see step 5:

- At least half of medians in step 2 are  x, thus at least 
1/2 n/5  -2 groups contribute 3 elements which are  x. 
i.e,  3(1/2 n/5  -2)  (3n/10)-6.
- Similarly, the number of elements  x is also at least 
(3n/10)-6.
– Thus, |S1| is at most (7n/10)+6, similarly for |S3|.
– Thus SELECT in step 5 is called recursively on at most 

(7n/10)+6 elements.
• Recurrence is:

T(n)=  O(1)                         if n< 140       
T(n/5)+T(7n/10+6)+O(n)  if n 140



Solve recurrence by substitution

• Suppose T(n)  cn, for some c.
• T(n)  c n/5+ c(7n/10+6) + an

 cn/5+ c + 7/10cn+6c + an
= 9/10cn+an+7c
=cn+(-cn/10+an+7c) 

– Which is at most cn if -cn/10+an+7c<0.
– i.e., c 10a(n/(n-70)) when n>70. 

– So select n=140, and then c 20a.
Note: n may not be 140, any integer >70 is OK.



Implication for Quicksort

• Worst case improves to O(n log n) 
BUT…



Test your understanding

1. Problem 9.3-7: Describe an O(n) algorithm 
that, given a set S of n distinct numbers and a 
positive integer k <= n, determines the k 
numbers in S that are closest to the median of 
S.

2. Problem 9.3-8: Let X[1..n], Y[1..n] be two 
sorted arrays. Give an O(lg n) algorithm to 
find the median of all 2n elements in arrays 
X,Y.



Next: dynamic programming

(no it’s not a new programming language or
paradigm!)


