Next...

1. Covered basics of a simple design technique (Divide-
and-conquer) — Ch. 2 of the text.
2. Next, more sorting algorithms.

Sorting

Switch from design paradigms to applications.
Sorting and order statistics (Ch 6 — 9).

First:
Heapsort
—Heap data structure and priority queue ADT

Quicksort
—a popular algorithm, very fast on average

Why Sorting?

“When in doubt, sort” — one of the principles of

algorithm design. Sorting used as a subroutine In
many of the algorithms:

— Searching in databases: we can do binary search
on sorted data

— A large number of computer graphics and
computational geometry problems

— Closest pair, element uniqueness
e A large number of sorting algorithms are developed
representing different algorithm design techniques.

* A lower bound for sorting £Xn log n) is used to prove
lower bounds of other problems.

Sorting algorithms so far

 Insertion sort, selection sort
— Worst-case running time @&(n?); in-place
 Merge sort

— Worst-case running time &(n log n), but requires
additional memory @&(n); (WHY?)

Selection sort

Selection-Sort(A[1l..n]):
For 1 > n downto 2

A: Find the largest element among A[1l..1]

B: Exchange 1t with A[1]

 Atakes ©(n) and B takes &1): &(n?) in total

« |dea for improvement: use a data structure, to do
both A and B in O(lg n) time, balancing the work,
achieving a better trade-off, and a total running time

O(n log n).

Heap sort

e Binary heap data structure A
— array

— Can be viewed as a nearly complete binary tree
« All levels, except the lowest one are completely filled

— The key In root is greater or equal than all its
children, and the left and right subtrees are again
binary heaps

« Two attributes

— length[A]

— heap-size[A]

Heap sort

Parent (/)
return |72

Left (/)
return 2/

Right (/)
return 241

Heap property: 1 2 3 45 6 7 8 9 10

A[Parent()] > Al /] 16

Level: 3 2 1 0

Heap sort

* Notice the implicit tree links; children of node |
are 21 and 2i+1

 Why is this useful?

— In a binary representation, a multiplication/division
by two is left/right shift

— Adding 1 can be done by adding the lowest bit

Heapify

| IS Index Into the array A
Binary trees rooted at Left(i) and Right(i) are heaps

But, AJi] might be smaller than its children, thus
violating the heap property

The method Heapify makes A a heap once more by
moving A[i] down the heap until the heap property is
satisfied again

Heapify

n is total number of elements
HEAPIFY(A, 1)
1 > Left & Right subtrees of ¢ are heaps.
2 > Makes subtree rooted at ¢ a heap.
3 [< LEFT(Z) > =2i
4 r < RIGHT(?) >r=2i+1
5 if I < n and A[l] > Ali]
6 then largest < [
7 else largest <1
8 if r < n and A[r] > Allargest]
9 then largest < r
10 if largest # 1
11 then exchange A[i| +> Allargest]
12 HEAPIFY (A, largest)

Heapify Example

l. Call HEARPIFY(A,2) 3. Exchange A[4] with A[9] and
1 recursively call HEAPIFY (A,9)

racurai?sly call HEAPIFY(A,4)

- 4. Node 9% has no children,
80 we are done.

Heapify: Running time

 The running time of Heapify on a subtree of size
n rooted at node i Is

— determining the relationship between elements: O(1)

— plus the time to run Heapify on a subtree rooted at one
of the children of i, where 2n/3 is the worst-case size of
this subtree.

— Alternatively
* Running time on a node of height h: O(h)

T(M)<T(2n/3)+O() = T(n)=0(logn)

Building a Heap

« Convert an array A[l...n], where n = length[A], Into a
heap

* Notice that the elements in the subarray A[(|_n/2J +
1)...n] are already 1-element heaps to begin with!

BuIiLD-HEAP(A)

lfor i < |n/2| downto 1
2 do HEAPIFY(A, 7)

Building a heap

Lad

10

Building a Heap: Analysis

e Correctness: induction on 1, all trees rooted at
m > | are heaps

 Running time: less than n calls to Heapify = n
O(lgn) =0O(n Ig n)

e Good enough for an O(n Ig n) bound on
Heapsort, but sometimes we build heaps for

other reasons, would be nice to have a tight
bound

— Intuition: for most of the time Heapify works on
smaller than n element heaps

Building a Heap: Analysis (2)

e Definitions

— height of node: longest path from node to leaf
— height of tree: height of root

BuiLD-HEAP(A)
lfor ¢ < [n/2| downto 1

2

do HEAPIFY(A, i)

— time to Heapify = O(height of subtree rooted at i)
— assume n = 2k — 1 (a complete binary tree k = |Ig n_)

T(n)

(@) ”+1+n+4-2+9i14&h“+1kj
2 4 8
Llgn] ; llgn]
O (nJrl)-ZLi since Li: 172 =2
i1 2 iz 2 (1—1/2)

O(n)

Building a Heap: Analysis (3)

« How? By using the following "trick"

o0

Zx' =y |f x|<1 //differentiate

i=0 T

i X /imultiply by x

; (1_X)2 ply by

2 1
% [Iplug In X =—

; 1 x) PHES 2

Z |_ :1/2:2
=2 1/4

* Therefore Build-Heap time is O(n)

Heap sort

HEAPSORT(A) Analysis
1 BUILD-HEAP(A) 77 O(n)
2for 7 <+ n downto 2 n times
3 do exchange A[l]| <+ A[f] O(1)
! n+n—1 O(1)
5 HEAPIFY(A, 1) O(lgn)

The total running time of heap sortis O(n Ig n)
+ Build-Heap(A) time, which is O(n)

Heap sort ® ®) Q

@ o » & VY e ¢ e e
"0 e @
(d)

@@
S ()
N ®/@\® f
9 9 .i

O 9® ® @ 06 e ® 6 o

(k)

Heap Sort: Summary

e Heap sort uses a heap data structure to
Improve selection sort and make the running
time asymptotically optimal

 Running time is O(n log n) — like merge sort,
but unlike selection, insertion, or bubble sorts

e Sorts in place - like insertion, selection or
bubble sorts, but unlike merge sort

Priority Queues

o A priority gueue is an ADT(abstract data type)
for maintaining a set S of elements, each with
an associated value called key

A PQ supports the following operations

— Insert(S,x) insert element x in set S (S<-SuU{x})

— Maximum(S) returns the element of S with the
largest key

— Extract-Max(S) returns and removes the element
of S with the largest key

Priority Queues (2)

* Applications:
— Job scheduling shared computing resources (Unix)
— Event simulation
— As a building block for other algorithms

A Heap can be used to implement a PQ

Priority Queues(3)
 Removal of max takes constant time on top of

Heapify @(Ign)

HEAP-EXTRACT-MAX(A)
1 > Removes and returns largest element of A

2 maz+ All]

3 All] < Aln]

4 n+n-—1

5 HEAPIFY(A,1) > Remakes heap
6 return max

Priority Queues(4)

e Insertion of a new element

— enlarge the PQ and propagate the new element
from last place "up” the PQ

— tree is of height Ig n, running time: @(lg ﬂ)

HEAP-INSERT(A, key)
1 heap-size[A] < heap-size[A] + 1
21 < heap-size| Al
3while ¢ > 1 and A[PARENT(7)] < key
4 do Ali] + A[PARENT(7)]
5 i 4 PARENT(7)
6 Ali] < key

Priority Queues(5)

Insert a new element: 15

{a}

Quick Sort

e Characteristics

— sorts "almost” in place, i.e., does not require an
additional array, like insertion sort

— Divide-and-conquer, like merge sort

— very practical, average sort performance O(n log
n) (with small constant factors), but worst case
O(n?) [CAVEAT: this is true for the CLRS version]

Quick Sort - the main idea

e To understand quick-sort, let’s look at a high-
level description of the algorithm

» A divide-and-conquer algorithm

— Divide: partition array into 2 subarrays such that
elements in the lower part <= elements in the
higher part

— Conguer: recursively sort the 2 subarrays
— Combine: trivial since sorting is done Iin place

Partitioning

e Linear time partitioning procedure

Partition(A,p,r) ! J
01 x<A[r] 17112 19123 8 | 5 |10
02 1<p-1
03 jer+l <X=10< i]
04 while TRUE
05 repeat j<j-1 10 | 12 19123 8 | 5 |1/
06 until A[j] =x i _
07 repeat 1«<i+l J
08 until A[1] >x 10| 5 19123 | 8 |12 | 17
09 1T 1<j
10 then exchange A[1]<Al]] - i
11 else return j

10| 5 8 12319 |12 |17

Quick Sort Algorithm

 |nitial call Quicksort(A, 1, length[A])

Quicksort(A,p,r)

O1 1f p<r

02 then qg<Partition(A,p,r)
03 Quicksort(A,p,q)
04 Quicksort(A,g+l,r)

Analysis of Quicksort

« Assume that all input elements are distinct

e The running time depends on the distribution
of splits

Best Case

 |f we are lucky, Partition splits the array
evenly T(n)=2T(n/2)+O(n)

A n P> p
an/ \m’z >
n/4 n/4 n/4 n/4 —————» p

5% A AN AD

8 n/8 n'8 e n/'8 n/'8 e —» n

ot — — —
— = = =
=

I 1

— == -
o -
— = — —
p—tt — — —
_ = = =
— == -
=
f—t — = =
—" — — —

O(n g n)

Using the median as a pivot

* The recurrence in the previous slide works
out, BUT......

Q: Can we find the median In linear-time?

A: YES! But we need to wait until we get to
Chapter 8.....

Worst Case

 What is the worst case?
* One side of the parition has only one element

TN)=TQ)+T(n-1) +6(n)
= T(n-=-1)+06(n)

> 6(K)

@(i K)
= 0(n%)

Worst Case (2)

AN g

1 =]

1/\!3'—2 -

i l/\ﬂ—S o
1/\'-,_

\2_)"

Y l/\l—)"

n—1

=2

Worst Case (3)

When does the worst case appear?
— Input is sorted
— Input reverse sorted

Same recurrence for the worst case of
Insertion sort

However, sorted input yields the best case for
Insertion sort!

Analysis of Quicksort

e Suppose the splitis 1/10 : 9/10
T(n)=T(n/10)+T(9n/10) + ®(n) =B(nlogn)!

A A R s
1 9
l_(}n].U i)‘ n
logj,n 7 T~ TN
.
" T 100" 100 " T L
Uglom It / \ / \ / \ / \
/0 S S
81 729 >
v 1000 " Tooo "
/\ /\
’ v ; \\ ’ ﬂﬁ
\
\ | — <

An Average Case Scenario

e Suppose, we alternate

lucky and unlucky
cases to get an
average behavior

n

--> @(n)

n-1

PN

(n-1)/2

(n-1)/2

L(n)=2U(n/2)+O(n) lucky
U(n)=L(n-1)+®(n) unlucky
we consequently get
L(n)=2(L(n/2-1)+®(n/2))+6(n)
= 2L(n/2-1)+0O(n)
= O(nlogn)

n - @(n)

AN

(n-1)/2+1 (n-1)/2

An Average Case Scenario (2)

 How can we make sure that we are usually
lucky?
— Partition around the "middle” (n/2th) element?

— Partition around a random element (works well in
practice)

 Randomized algorithm
— running time is independent of the input ordering
— no specific input triggers worst-case behavior

— the worst-case is only determined by the output of
the random-number generator

Randomized Quicksort

Assume all elements are distinct
Partition around a random element

Randomization Is a general tool to improve
algorithms with bad worst-case but good
average-case complexity

