
1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text.

2. Next, more sorting algorithms.

Next…

Sorting

Switch from design paradigms to applications.
Sorting and order statistics (Ch 6 – 9).

First:
Heapsort
–Heap data structure and priority queue ADT
Quicksort
–a popular algorithm, very fast on average

Why Sorting?

“When in doubt, sort” – one of the principles of
algorithm design. Sorting used as a subroutine in
many of the algorithms:
– Searching in databases: we can do binary search

on sorted data
– A large number of computer graphics and

computational geometry problems
– Closest pair, element uniqueness

• A large number of sorting algorithms are developed
representing different algorithm design techniques.

• A lower bound for sorting (n log n) is used to prove
lower bounds of other problems.

Sorting algorithms so far

• Insertion sort, selection sort
– Worst-case running time (n2); in-place

• Merge sort
– Worst-case running time (n log n), but requires

additional memory (n); (WHY?)

Selection sort

• A takes (n) and B takes (1): (n2) in total
• Idea for improvement: use a data structure, to do

both A and B in O(lg n) time, balancing the work,
achieving a better trade-off, and a total running time
O(n log n).

Selection-Sort(A[1..n]):
For i  n downto 2

A: Find the largest element among A[1..i]
B: Exchange it with A[i]

Selection-Sort(A[1..n]):
For i  n downto 2

A: Find the largest element among A[1..i]
B: Exchange it with A[i]

Heap sort

• Binary heap data structure A
– array
– Can be viewed as a nearly complete binary tree

• All levels, except the lowest one are completely filled

– The key in root is greater or equal than all its
children, and the left and right subtrees are again
binary heaps

• Two attributes
– length[A]
– heap-size[A]

Heap sort

1423978101516
10987654321

Parent (i)
return i/2

Left (i)
return 2i

Right (i)
return 2i+1

Heap property:

A[Parent(i)]  A[i]

Level: 3 2 1 0

Heap sort

• Notice the implicit tree links; children of node i
are 2i and 2i+1

• Why is this useful?
– In a binary representation, a multiplication/division

by two is left/right shift
– Adding 1 can be done by adding the lowest bit

Heapify

• i is index into the array A
• Binary trees rooted at Left(i) and Right(i) are heaps
• But, A[i] might be smaller than its children, thus

violating the heap property
• The method Heapify makes A a heap once more by

moving A[i] down the heap until the heap property is
satisfied again

Heapify

Heapify Example

Heapify: Running time

• The running time of Heapify on a subtree of size
n rooted at node i is
– determining the relationship between elements: (1)
– plus the time to run Heapify on a subtree rooted at one

of the children of i, where 2n/3 is the worst-case size of
this subtree.

– Alternatively
• Running time on a node of height h: O(h)

() (2 /3) (1) () (log)T n T n T n O n   

Building a Heap

• Convert an array A[1...n], where n = length[A], into a
heap

• Notice that the elements in the subarray A[(n/2 +
1)...n] are already 1-element heaps to begin with!

Building a heap

Building a Heap: Analysis

• Correctness: induction on i, all trees rooted at
m > i are heaps

• Running time: less than n calls to Heapify = n
O(lg n) = O(n lg n)

• Good enough for an O(n lg n) bound on
Heapsort, but sometimes we build heaps for
other reasons, would be nice to have a tight
bound
– Intuition: for most of the time Heapify works on

smaller than n element heaps

Building a Heap: Analysis (2)

• Definitions
– height of node: longest path from node to leaf
– height of tree: height of root

– time to Heapify = O(height of subtree rooted at i)
– assume n = 2k – 1 (a complete binary tree k = lg n)

 
 

lg lg

2
1 1

1 1 1() 2 3 ... 1
2 4 8

1/ 21 since 2
2 2 1 1/ 2

()

n n

i i
i i

n n nT n O k

i iO n

O n

      

 

           
 
 

        


 

Building a Heap: Analysis (3)

• How? By using the following "trick"

• Therefore Build-Heap time is O(n)

 

 

0

1
2

1

2
1

1

1 if 1 //differentiate
1

1 //multiply by
1

1 //plug in
21

1/ 2 2
2 1/ 4

i

i

i

i

i

i

i
i

x x
x

i x x
x

xi x x
x

i


















 


 


  


 









Heap sort

The total running time of heap sort is O(n lg n)
+ Build-Heap(A) time, which is O(n)

O()n

Heap sort

Heap Sort: Summary

• Heap sort uses a heap data structure to
improve selection sort and make the running
time asymptotically optimal

• Running time is O(n log n) – like merge sort,
but unlike selection, insertion, or bubble sorts

• Sorts in place – like insertion, selection or
bubble sorts, but unlike merge sort

Priority Queues

• A priority queue is an ADT(abstract data type)
for maintaining a set S of elements, each with
an associated value called key

• A PQ supports the following operations
– Insert(S,x) insert element x in set S (SS{x})
– Maximum(S) returns the element of S with the

largest key
– Extract-Max(S) returns and removes the element

of S with the largest key

Priority Queues (2)

• Applications:
– job scheduling shared computing resources (Unix)
– Event simulation
– As a building block for other algorithms

• A Heap can be used to implement a PQ

Priority Queues(3)

• Removal of max takes constant time on top of
Heapify (lg)n

Priority Queues(4)

• Insertion of a new element
– enlarge the PQ and propagate the new element

from last place ”up” the PQ
– tree is of height lg n, running time: (lg)n

Priority Queues(5)

Insert a new element: 15

Quick Sort

• Characteristics
– sorts ”almost” in place, i.e., does not require an

additional array, like insertion sort
– Divide-and-conquer, like merge sort
– very practical, average sort performance O(n log

n) (with small constant factors), but worst case
O(n2) [CAVEAT: this is true for the CLRS version]

Quick Sort – the main idea

• To understand quick-sort, let’s look at a high-
level description of the algorithm

• A divide-and-conquer algorithm
– Divide: partition array into 2 subarrays such that

elements in the lower part <= elements in the
higher part

– Conquer: recursively sort the 2 subarrays
– Combine: trivial since sorting is done in place

Partitioning

• Linear time partitioning procedure

Partition(A,p,r)
01 xA[r]
02 ip-1
03 jr+1
04 while TRUE
05 repeat jj-1
06 until A[j] x
07 repeat ii+1
08 until A[i] x
09 if i<j
10 then exchange A[i]A[j]
11 else return j

1058231961217
i ji j

1758231961210

ji

1712823196510

ji

1712192386510

ij

1712192386510

 X=10 

Quick Sort Algorithm

• Initial call Quicksort(A, 1, length[A])

Quicksort(A,p,r)
01 if p<r
02 then qPartition(A,p,r)
03 Quicksort(A,p,q)
04 Quicksort(A,q+1,r)

Analysis of Quicksort

• Assume that all input elements are distinct
• The running time depends on the distribution

of splits

Best Case

• If we are lucky, Partition splits the array
evenly () 2 (/ 2) ()T n T n n 

Using the median as a pivot

• The recurrence in the previous slide works
out, BUT……

Q: Can we find the median in linear-time?
A: YES! But we need to wait until we get to

Chapter 8…..

Worst Case

• What is the worst case?
• One side of the parition has only one element

1

1

2

() (1) (1) ()
(1) ()

()

()

()

n

k

n

k

T n T T n n
T n n

k

k

n





    
  

 

 

 





Worst Case (2)

Worst Case (3)

• When does the worst case appear?
– input is sorted
– input reverse sorted

• Same recurrence for the worst case of
insertion sort

• However, sorted input yields the best case for
insertion sort!

Analysis of Quicksort

• Suppose the split is 1/10 : 9/10
() (/10) (9 /10) () (log)!T n T n T n n n n     

An Average Case Scenario

• Suppose, we alternate
lucky and unlucky
cases to get an
average behavior

() 2 (/ 2) () lucky
() (1) () unlucky

we consequently get
() 2((/ 2 1) (/ 2)) ()

2 (/ 2 1) ()
(log)

L n U n n
U n L n n

L n L n n n
L n n

n n

 
  

   
  
 n

1 n-1

(n-1)/2 (n-1)/2

()n

(n-1)/2+1 (n-1)/2

n ()n

An Average Case Scenario (2)

• How can we make sure that we are usually
lucky?
– Partition around the ”middle” (n/2th) element?
– Partition around a random element (works well in

practice)
• Randomized algorithm

– running time is independent of the input ordering
– no specific input triggers worst-case behavior
– the worst-case is only determined by the output of

the random-number generator

Randomized Quicksort

• Assume all elements are distinct
• Partition around a random element
• Randomization is a general tool to improve

algorithms with bad worst-case but good
average-case complexity

