
1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text. 

2. Next,  more sorting algorithms.

Next…



Sorting

Switch from design paradigms to applications.
Sorting and order statistics (Ch 6 – 9).

First:
Heapsort 
–Heap data structure and priority queue ADT
Quicksort
–a popular algorithm, very fast on average



Why Sorting?

“When in doubt, sort” – one of the principles of 
algorithm design. Sorting used as a subroutine in 
many of the algorithms:
– Searching in databases: we can do binary search 

on sorted data
– A large number of computer graphics and 

computational geometry problems
– Closest pair, element uniqueness

• A large number of sorting algorithms are  developed 
representing different algorithm design techniques.

• A lower bound for sorting (n log n) is used to prove 
lower bounds of other problems.



Sorting algorithms so far

• Insertion sort, selection sort
– Worst-case running time (n2); in-place

• Merge sort
– Worst-case running time (n log n), but requires 

additional memory (n); (WHY?)



Selection sort

• A takes (n) and B takes (1): (n2) in total
• Idea for improvement: use a data structure, to do 

both A and B in O(lg n) time, balancing the work, 
achieving a better trade-off, and a total running time 
O(n log n).

Selection-Sort(A[1..n]):
For i  n downto 2

A:    Find the largest element among A[1..i]   
B:    Exchange it with A[i]

Selection-Sort(A[1..n]):
For i  n downto 2

A:    Find the largest element among A[1..i]   
B:    Exchange it with A[i]



Heap sort

• Binary heap data structure A
– array
– Can be viewed as a nearly complete binary tree

• All levels, except the lowest one are completely filled

– The key in root is greater or equal than all its 
children, and the left and right subtrees are again 
binary heaps

• Two attributes
– length[A]
– heap-size[A]



Heap sort
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Parent (i)
return i/2

Left (i)
return 2i

Right (i)
return 2i+1

Heap property:

A[Parent(i)]  A[i]

Level:  3     2 1 0



Heap sort

• Notice the implicit tree links; children of node i
are 2i and 2i+1

• Why is this useful?
– In a binary representation, a multiplication/division 

by two is left/right shift
– Adding 1 can be done by adding the lowest bit



Heapify

• i is index into the array A
• Binary trees rooted at Left(i) and Right(i) are heaps
• But, A[i] might be smaller than its children, thus 

violating the heap property
• The method Heapify makes A a heap once more by 

moving A[i] down the heap until the heap property is 
satisfied again



Heapify



Heapify Example



Heapify: Running time

• The running time of Heapify on a subtree of size 
n rooted at node i is
– determining the relationship between elements: (1)
– plus the time to run Heapify on a subtree rooted at one 

of the children of i, where 2n/3 is the worst-case size of 
this subtree.

– Alternatively
• Running time on a node of height h: O(h)

( ) (2 /3) (1)   ( ) (log )T n T n T n O n   



Building a Heap

• Convert an array A[1...n], where n = length[A], into a 
heap

• Notice that the elements in the subarray A[(n/2 + 
1)...n] are already 1-element heaps to begin with!



Building a heap



Building a Heap: Analysis

• Correctness: induction on i, all trees rooted at 
m > i are heaps

• Running time: less than n calls to Heapify = n 
O(lg n) = O(n lg n)

• Good enough for an O(n lg n) bound on 
Heapsort, but sometimes we build heaps for 
other reasons, would be nice to have a tight 
bound
– Intuition: for most of the time Heapify works on 

smaller than n element heaps 



Building a Heap: Analysis (2)

• Definitions
– height of node: longest path from node to leaf
– height of tree: height of root

– time to Heapify = O(height of subtree rooted at i)
– assume n = 2k – 1 (a complete binary tree k = lg n) 
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Building a Heap: Analysis (3)

• How? By using the following "trick"

• Therefore Build-Heap time is O(n)
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Heap sort

The total running time of heap sort is  O(n lg n) 
+ Build-Heap(A) time, which is O(n)

O( )n



Heap sort



Heap Sort: Summary

• Heap sort uses a heap data structure to 
improve selection sort and make the running 
time asymptotically optimal

• Running time is O(n log n) – like merge sort, 
but unlike selection, insertion, or bubble sorts

• Sorts in place – like insertion, selection or 
bubble sorts, but unlike merge sort



Priority Queues

• A priority queue is an ADT(abstract data type) 
for maintaining a set S of elements, each with 
an associated value called key

• A PQ supports the following operations
– Insert(S,x) insert element x in set S (SS{x})
– Maximum(S) returns the element of S with the 

largest key
– Extract-Max(S) returns and removes the element 

of S with the largest key



Priority Queues (2)

• Applications: 
– job scheduling shared computing resources (Unix)
– Event simulation
– As a building block for other algorithms

• A Heap can be used to implement a PQ



Priority Queues(3)

• Removal of max takes constant time on top of 
Heapify (lg )n



Priority Queues(4)

• Insertion of a new element
– enlarge the PQ and propagate the new element 

from last place ”up” the PQ
– tree is of height lg n, running time: (lg )n



Priority Queues(5)

Insert a new element: 15



Quick Sort

• Characteristics
– sorts ”almost” in place, i.e., does not require an 

additional array, like insertion sort
– Divide-and-conquer, like merge sort
– very practical, average sort performance O(n log 

n) (with small constant factors), but worst case 
O(n2) [CAVEAT: this is true for the CLRS version]



Quick Sort – the main idea

• To understand quick-sort, let’s look at a high-
level description of the algorithm

• A divide-and-conquer algorithm
– Divide: partition array into 2 subarrays such that 

elements in the lower part <= elements in the 
higher part

– Conquer: recursively sort the 2 subarrays
– Combine: trivial since sorting is done in place



Partitioning

• Linear time partitioning procedure

Partition(A,p,r)
01 xA[r]
02 ip-1
03 jr+1
04 while TRUE
05 repeat jj-1
06 until A[j] x
07 repeat ii+1
08 until A[i] x
09 if i<j
10 then exchange A[i]A[j]
11 else return j
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Quick Sort Algorithm

• Initial call Quicksort(A, 1, length[A])

Quicksort(A,p,r)
01 if p<r
02 then qPartition(A,p,r)
03 Quicksort(A,p,q)
04 Quicksort(A,q+1,r)



Analysis of Quicksort

• Assume that all input elements are distinct
• The running time depends on the distribution 

of splits



Best Case

• If we are lucky, Partition splits the array 
evenly ( ) 2 ( / 2) ( )T n T n n 



Using the median as a pivot

• The recurrence in the previous slide works 
out, BUT……

Q: Can we find the median in linear-time?
A: YES! But we need to wait until we get to 

Chapter 8…..



Worst Case

• What is the worst case?
• One side of the parition has only one element
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Worst Case (2)



Worst Case (3)

• When does the worst case appear?
– input is sorted 
– input reverse sorted

• Same recurrence for the worst case of 
insertion sort

• However, sorted input yields the best case for 
insertion sort!



Analysis of Quicksort

• Suppose the split is 1/10 : 9/10
( ) ( /10) (9 /10) ( ) ( log )!T n T n T n n n n     



An Average Case Scenario

• Suppose, we alternate 
lucky and unlucky 
cases to get an 
average behavior
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An Average Case Scenario (2)

• How can we make sure that we are usually 
lucky?
– Partition around the ”middle” (n/2th) element?
– Partition around a random element (works well in 

practice)
• Randomized algorithm

– running time is independent of the input ordering
– no specific input triggers worst-case behavior
– the worst-case is only determined by the output of 

the random-number generator



Randomized Quicksort

• Assume all elements are distinct
• Partition around a random element
• Randomization is a general tool to improve 

algorithms with bad worst-case but good 
average-case complexity


