
Next: Lower bounds

Q: Can we beat the Ω(n log n) lower bound for
sorting?

A: In general no, but in some special cases
YES!

Ch 7: Sorting in linear time

Let’s prove the Ω(n log n) lower bound.

Lower bounds

• What are we counting?
Running time? Memory? Number of times a specific
operation is used?

• What (if any) are the assumptions?
• Is the model general enough?

Here we are interested in lower bounds for the WORST
CASE. So we will prove (directly or indirectly):
for any algorithm for a given problem, for each n>0,
there exists an input that make the algorithm take
Ω(f(n)) time. Then f(n) is a lower bound on the worst
case running time.

Comparison-based algorithms

Finished looking at comparison-based sorts.
Crucial observation: All the sorts work for any set of

elements – numbers, records, objects,……
Only require a comparator for two elements.

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int(*compar)(const void *, const
void *));

DESCRIPTION: The qsort() function sorts an array with nmemb elements of size
size. The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to a
comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared.

Comparison-based algorithms

• The algorithm only uses the results of comparisons,
not values of elements (*).

• Very general – does not assume much about what
type of data is being sorted.

• However, other kinds of algorithms are possible!
• In this model, it is reasonable to count #comparisons.
• Note that the #comparisons is a lower bound on the

running time of an algorithm.

(*) If values are used, lower bounds proved in this
model are not lower bounds on the running time.

Lower bound for a simpler problem

Let’s start with a simple problem.

Minimum of n numbers

Minimum (A)
1. min = A[1]
2. for i = 2 to length[A]
3. do if min >= A[i]
4. then min = A[i]
5. return min

Can we do this with
fewer comparisons?

We have seen very different
algorithms for this problem. How
can we show that we cannot do
better by being smarter?

Lower bounds for the minimum

Claim: Any comparison-based algorithm for finding the
minimum of n keys must use at least n-1 comparisons.

Proof: If x,y are compared and x > y, call x the winner.
Any key that is not the minimum must have won at least
one comparison. WHY?

Each comparison produces exactly one winner and at
most one NEW winner.

⇒at least n-1 comparisons have to be made.

Points to note

Crucial observations: We proved a claim about ANY
algorithm that only uses comparisons to find the
minimum. Specifically, we made no assumptions about

1. Nature of algorithm.
2. Order or number of comparisons.
3. Optimality of algorithm
4. Whether the algorithm is reasonable – e.g. it could be a

very wasteful algorithm, repeating the same
comparisons.

On lower bound techniques

Unfortunate facts:
Lower bounds are usually hard to prove.
Virtually no known general techniques – must try ad hoc

methods for each problem.

Lower bounds for comparison-based sorting

• Trivial: Ω(n) – every element must take part in a
comparison.

• Best possible result – Ω(n log n) comparisons, since
we already know several O(n log n) sorting algorithms.

• Proof is non-trivial: how do we reason about all possible
comparison-based sorting algorithms?

The Decision Tree Model

• Assumptions:
– All numbers are distinct (so no use for ai = aj)
– All comparisons have form ai ≤ aj (since ai ≤ aj, ai ≥

aj, ai < aj, ai > aj are equivalent).
• Decision tree model

– Full binary tree
– Ignore control, movement, and all other operations,

just use comparisons.
– suppose three elements < a1, a2, a3> with instance

<6,8,5>.

Example: insertion sort (n=3)

A[2]: A[3] A[1]: A[3]

A[1]: A[2]

A[1]: A[3] A[2]: A[3]

>

>

>>

>

≤

≤

≤

≤

≤

A[1]A[2]A[3]

A[1]A[3]A[2] A[3]A[1]A[2] A[2]A[3]A[1]

A[2]A[1]A[3]

A[3]A[2]A[1]

The Decision Tree Model

2:3

1:2

2:3

1:3

1:3<1,2,3>

<1,3,2> <3,1,2>

<2,1,3>

<2,3,1> <3,2,1>

≤

≤ ≤

≤

>

>

>

>

>

Internal node i:j indicates comparison between ai and aj.
Leaf node <π(1), π(2), π(3)> indicates ordering aπ(1)≤ aπ(2)≤ aπ(3).
Path of bold lines indicates sorting path for <6,8,5>.
There are total 3!=6 possible permutations (paths).

≤

Summary

Only consider comparisons
Each internal node = 1 comparison
Start at root, make the first comparison

- if the outcome is ≤ take the LEFT branch
- if the outcome is > - take the RIGHT branch
Repeat at each internal node

Each LEAF represents ONE correct ordering

Intuitive idea

Subset S1 of S
s.t. x[i] ≤ x[j]

Subset S2 of S
s.t. x[i] > x[j]

S
x[i] : x[j]

≤ >

S is a set of permutations

Lower bound for the worst case

• Claim: The decision tree must have at least n! leaves.
WHY?

• worst case number of comparisons= the height of the
decision tree.

• Claim: Any comparison sort in the worst case needs Ω(n
log n) comparisons.

• Suppose height of a decision tree is h, number of paths
(i,e,, permutations) is n!.

• Since a binary tree of height h has at most 2h leaves,

n! ≤ 2h , so h ≥ lg (n!) ≥ Ω(n lg n)

Lower bounds: check your understanding

Can you prove that any algorithm that searches for an
element in a sorted array of size n must have running time
Ω(lg n) ?

Minimum and Maximum

Problem: Find the maximum and the minimum of n elements.

• Naïve algorithm 1: Find the minimum, then find the
maximum -- 2(n-1) comparisons.

• Naïve algorithm 2: Find the minimum, then find the
maximum of n-1 elements -- (n-1) + (n-2) = 2n -3
comparisons.

Minimum and Maximum – better algorithms

Problem: Find the maximum and the minimum of n elements.

Approach 1
•Sort n/2 pairs. Find min of losers, max of winners.
comparisons: n/2 + n/2 –1 + n/2-1 = 3n/2 –2.

Approach 2
•Divide into n/2 pairs. Compare the first pair, set winner to
current max, loser to current min.
•Sort next pair, compare winner to current max, loser to
current min.
#comparisons: 1 + 3(n/2 –1) = 3n/2 –2.

Is this the best possible?

Lower bounds for the MIN and MAX

Claim: Every comparison-based algorithm for finding
both the minimum and the maximum of n elements
requires at least (3n/2)-2 comparisons.

Idea: Use similar argument as for the minimum
Max = maximum and Min=minimum only if:
Every element other than min has won at least 1
Every element other than max has lost at least 1

A proof?

“Proof” from the web: For each comparison, x<y, score a
point if this is first comparison that x loses or if y wins and 2
points if both occur. Before the algorithm can terminate n-2
must both win and lose (since they aren't min or max) and 2
elements must either win or lose. Thus, 2(n-2)+2 points are
scored before termination.

Define A to be the set of elements that have not won or lost
a comparison. All comparisons between elements in A must
score 2 points. All other comparisons can score at most 1
point. Let X be A-A comparisons. Let Y be number of other
comparisons. We want to minimize X+Y such that 2X+Y ≥
2n-2 & X ≤ n/2 (assume n is even). Given the constraints
we want to make X as big as possible. So set X=n/2. Then
Y ≥ 2n-2-2X ⇒ Y ≥ 2n-2-n ⇒ Y ≥ n-2 ⇒ X+Y ≥ n/2 + n - 2.

Is the previous proof correct?

Lower bounds for the MIN and MAX

Idea: Define 4 sets: U: has not participated in a comparison
W: has won all comparisons
L: has lost all comparisons
N: has won and lost at least one

comparison
Note: All these sets are disjoint.
1. Initially all elements in U.
2. Finally no elements in U, 1 each in W,L and n-2 in N.
3. Each element in N comes from U via W or L.

Lower bounds for the MIN and MAX - contd

Idea: Score a point when an element enters W or L or N for
the first time.

Question: Can we ensure that only U-U comparisons result in
two points being scored?

Answer: YES! The adversary argument!

The adversary constructs a worst-case input by revealing as
little as possible about the inputs.

Lower bounds for the MIN and MAX - contd

Adversary strategy:
U-U: any
U-W: make element of W winner
U-L: make element of L loser
U-N: any
W-W: any (be consistent with before)
W-L/N: make element of W winner
L-L: any (be consistent with before)
L-N: make element of L loser

Lower bounds for the MIN and MAX – contd.

We need to score 2n–2 points. At most n/2 U-U comparisons
can be made – gives n points.

To move n-2 elements to N, we need another n-2
comparisons.

Next: Linear sorting

Q: Can we beat the Ω(n log n) lower bound for
sorting?

A: In general no, but in some special cases
YES!

Ch 7: Sorting in linear time

