#### **Next: Lower bounds**

- Q: Can we beat the  $\Omega(n \log n)$  lower bound for sorting?
- A: In general no, but in some special cases YES!
- Ch 7: Sorting in linear time

Let's prove the  $\Omega(n \log n)$  lower bound.

#### **Lower bounds**

- What are we counting? Running time? Memory? Number of times a specific operation is used?
- What (if any) are the assumptions?
- Is the model general enough?

Here we are interested in lower bounds for the WORST CASE. So we will prove (directly or indirectly): for any algorithm for a given problem, for each n>0, there exists an input that make the algorithm take  $\Omega(f(n))$  time. Then f(n) is a lower bound on the worst case running time.

## **Comparison-based algorithms**

Finished looking at comparison-based sorts.
Crucial observation: All the sorts work for any set of elements – numbers, records, objects,.....
Only require a comparator for two elements.

#include <stdlib.h>

void qsort(void \*base, size\_t nmemb, size\_t size, int(\*compar)(const void \*, const void \*));

DESCRIPTION: The qsort() function sorts an array with *nmemb* elements of *size* size. The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to a comparison function pointed to by *compar*, which is called with two arguments that point to the objects being compared.

## **Comparison-based algorithms**

- The algorithm only uses the results of comparisons, not values of elements (\*).
- Very general does not assume much about what type of data is being sorted.
- However, other kinds of algorithms are possible!
- In this model, it is reasonable to count #comparisons.
- Note that the #comparisons is a **lower bound** on the running time of an algorithm.

(\*) If values are used, lower bounds proved in this model are not lower bounds on the running time.

Lower bound for a simpler problem Let's start with a simple problem.

Minimum of n numbers

Minimum (A)

- 1. min = A[1]
- 2. for i = 2 to length[A]
- 3. do if min >= A[i]
- 4. then  $\min = A[i]$

5. return min

# Can we do this with fewer comparisons?

We have seen very different algorithms for this problem. How can we show that we cannot do better by being smarter?

## **Lower bounds for the minimum**

Claim: Any comparison-based algorithm for finding the minimum of n keys must use at least <u>n-1 comparisons.</u>

Proof: If x,y are compared and x > y, call x the <u>winner</u>.

- Any key that is not the minimum must have won at least one comparison. WHY?
- Each comparison produces exactly one winner and at most one NEW winner.

 $\Rightarrow$ at least n-1 comparisons have to be made.

## **Points to note**

Crucial observations: We proved a claim about ANY algorithm that only uses comparisons to find the minimum. Specifically, we made no assumptions about

- 1. Nature of algorithm.
- 2. Order or number of comparisons.
- 3. Optimality of algorithm
- Whether the algorithm is reasonable e.g. it could be a very wasteful algorithm, repeating the same comparisons.

## **On lower bound techniques**

Unfortunate facts:

- Lower bounds are usually hard to prove.
- Virtually no known general techniques must try ad hoc methods for each problem.

## Lower bounds for comparison-based sorting

- Trivial:  $\Omega(n)$  every element must take part in a comparison.
- Best possible result  $\Omega(n \log n)$  comparisons, since we already know several O(n log n) sorting algorithms.
- Proof is non-trivial: how do we reason about all possible comparison-based sorting algorithms?

## **The Decision Tree Model**

- Assumptions:
  - All numbers are distinct (so no use for  $a_i = a_i$ )
  - All comparisons have form  $a_i \le a_j$  (since  $a_i \le a_j$ ,  $a_i \ge a_j$ ,  $a_i < a_j$ ,  $a_i > a_j$  are equivalent).
- Decision tree model
  - Full binary tree
  - Ignore control, movement, and all other operations, just use comparisons.
  - suppose three elements <  $a_1$ ,  $a_2$ ,  $a_3$ > with instance <6,8,5>.

#### **Example: insertion sort (n=3)**



#### **The Decision Tree Model**



Internal node i:j indicates comparison between  $a_i$  and  $a_j$ . Leaf node  $\langle \pi(1), \pi(2), \pi(3) \rangle$  indicates ordering  $a_{\pi(1)} \leq a_{\pi(2)} \leq a_{\pi(3)}$ . Path of bold lines indicates sorting path for  $\langle 6, 8, 5 \rangle$ . There are total 3!=6 possible permutations (paths).

## Summary

- Only consider comparisons
- □ Each internal node = 1 comparison
- □ Start at root, make the first comparison
  - if the outcome is  $\leq$  take the LEFT branch
  - if the outcome is > take the RIGHT branch
- □ Repeat at each internal node
- □ Each LEAF represents ONE correct ordering

#### **Intuitive idea**

S is a set of permutations



## Lower bound for the worst case

- Claim: The decision tree must have at least n! leaves.
   WHY?
- worst case number of comparisons= the height of the decision tree.
- Claim: Any comparison sort in the worst case needs  $\Omega(n \log n)$  comparisons.
- Suppose height of a decision tree is h, number of paths (i,e,, permutations) is n!.
- Since a binary tree of height h has at most 2<sup>h</sup> leaves,

 $n! \le 2^h$ , so  $h \ge \lg (n!) \ge \Omega(n \lg n)$ 

## Lower bounds: check your understanding

Can you prove that any algorithm that searches for an element in a sorted array of size n must have running time  $\Omega(\lg n)$ ?

## **Minimum and Maximum**

Problem: Find the maximum and the minimum of n elements.

- Naïve algorithm 1: Find the minimum, then find the maximum -- 2(n-1) comparisons.
- Naïve algorithm 2: Find the minimum, then find the maximum of n-1 elements -- (n-1) + (n-2) = 2n -3 comparisons.

## **Minimum and Maximum – better algorithms**

Problem: Find the maximum and the minimum of n elements.

Approach 1

•Sort n/2 pairs. Find min of losers, max of winners.

# comparisons: n/2 + n/2 - 1 + n/2 - 1 = 3n/2 - 2.

## Is this the best possible?

Approach 2

•Divide into n/2 pairs. Compare the first pair, set winner to current max, loser to current min.

•Sort next pair, compare winner to current max, loser to current min.

#comparisons: 1 + 3(n/2 - 1) = 3n/2 - 2.

## Lower bounds for the MIN and MAX

Claim: Every comparison-based algorithm for finding both the minimum and the maximum of n elements requires at least (3n/2)-2 comparisons.

Idea: Use similar argument as for the minimum

Max = maximum and Min=minimum only if:

Every element other than min has won at least 1

Every element other than max has lost at least 1

## A proof?

"Proof" from the web: For each comparison, x<y, score a point if this is first comparison that x loses or if y wins and 2 points if both occur. Before the algorithm can terminate n-2 must both win and lose (since they aren't min or max) and 2 elements must either win or lose. Thus, 2(n-2)+2 points are scored before termination.

Define A to be the set of elements that have not won or lost a comparison. All comparisons between elements in A must score 2 points. All other comparisons can score at most 1 point. Let X be A-A comparisons. Let Y be number of other comparisons. We want to minimize X+Y such that  $2X+Y \ge$  $2n-2 \& X \le n/2$  (assume n is even). Given the constraints we want to make X as big as possible. So set X=n/2. Then  $Y \ge 2n-2-2X \Rightarrow Y \ge 2n-2-n \Rightarrow Y \ge n-2 \Rightarrow X+Y \ge n/2 + n - 2$ .

#### **Is the previous proof correct?**

## Lower bounds for the MIN and MAX

Idea: Define 4 sets: U: has not participated in a comparison

W: has won all comparisons

- L: has lost all comparisons
- N: has won and lost at least one comparison

Note: All these sets are disjoint.

- 1. Initially all elements in U.
- 2. Finally no elements in U, 1 each in W,L and n-2 in N.
- 3. Each element in N comes from U via W or L.

## Lower bounds for the MIN and MAX - contd

- Idea: Score a point when an element enters W or L or N for the first time.
- Question: Can we ensure that only U-U comparisons result in two points being scored?
- Answer: YES! The adversary argument!

The adversary constructs a worst-case input by revealing as little as possible about the inputs.

## Lower bounds for the MIN and MAX - contd

Adversary strategy:

U-U: any

U-W: make element of W winner

U-L: make element of L loser

U-N: any

- W-W: any (be consistent with before)
- W-L/N: make element of W winner
- L-L: any (be consistent with before)
- L-N: make element of L loser

#### Lower bounds for the MIN and MAX – contd.

We need to score 2n–2 points. At most n/2 U-U comparisons can be made – gives n points.

To move n-2 elements to N, we need another n-2 comparisons.

## **Next: Linear sorting**

- Q: Can we beat the  $\Omega(n \log n)$  lower bound for sorting?
- A: In general no, but in some special cases YES!

Ch 7: Sorting in linear time