
6/18/2013 CSE 3101 1

Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875

Lectures: Tues, TEL 0016, 7–10 PM

Office hours: Tue 6-7 pm, Wed 4-6 pm (CSEB 3043), or
by appointment.

Textbook: Cormen, Leiserson, Rivest, Stein.
Introduction to Algorithms (3nd Edition)

CSE 3101: Introduction to the Design and
Analysis of Algorithms

So far....

Finished looking at lower bounds and linear sorts.

Next: Memoization
-- Optimization problems - Dynamic programming
– A scheduling problem
– Matrix multiplication optimization
– Longest Common Subsequence
– Principles of dynamic programming

Divide and Conquer

• Divide and conquer method:
– Divide: If the input size is too large to deal with in a

straightforward manner, divide the problem into
two or more disjoint subproblems

– Conquer: Use divide and conquer recursively to
solve the subproblems

– Combine: Take the solutions to the subproblems
and “merge” these solutions into a solution for the
original problem

Divide and Conquer(2)

• E.g., MergeSort

• The subproblems
are independent.

Merge-Sort(A, p, r)
if p < r then

q(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge-Sort(A, p, r)
if p < r then

q(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Fibonacci Numbers

• Fn= Fn-1+ Fn-2

• F0 =0, F1 =1
– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …

• Straightforward recursive procedure is slow!
• Why? How slow?
• Let’s draw the recursion tree

Fibonacci Numbers (2)

• We keep calculating the same value over and over!

F(6) = 8

F(5)

F(4)

F(3)

F(1)

F(2)

F(0)

F(1) F(1)

F(2)

F(0)

F(3)

F(1)

F(2)

F(0)

F(1)

F(4)

F(3)

F(1)

F(2)

F(0)

F(1) F(1)

F(2)

F(0)

Fibonacci Numbers (3)

• How many summations are there?
• Golden ratio
• Thus Fn»1.6n

• Our recursion tree has only 0s and 1s as leaves, thus
we have »1.6n summations

• Running time is exponential!

1 1 5 1.61803...
2

n

n

F
F

 
  

Fibonacci Numbers (4)

• We can calculate Fn in linear time by remembering
solutions to the solved subproblems – memoization

• Compute solution in a bottom-up fashion
• Trade space for time!

– In this case, only two values need to be remembered at
any time (less than the depth of recursion stack!)

Fibonacci(n)
F00
F11
for i  1 to n do

Fi  Fi-1 + Fi-2

Fibonacci(n)
F00
F11
for i  1 to n do

Fi  Fi-1 + Fi-2

Lessons

We were able to reduce redundant computation
by evaluating the recurrence in a certain order,
and remembering previous values.

This is called memoization (no typo). This is
used very often in dynamic programming.

A parsing problem

The following encoding is used to encode text:

a:1, b:2, …, y:25, z:26.

Unfortunately this is not a prefix-free code (the code for
b is a prefix for the code for y).

So parsing is ambiguous:

Given 1125: possible decodings are

aabe, aay, ale, kbe, ky

Problem: Given a string of digits, find the number of
valid decodings.

Counting paths on lattices

You are given a m x n lattice of points. Starting from the
top left corner, you are required to take right and down
steps to reach the bottom right corner.

How many different paths are there?

Counting paths on lattices

You are given a m x n lattice of points. Some of these
points are marked “no entry”

Starting from the top left corner, you are required to
take right and down steps to reach the bottom right
corner.

How many different paths are there?

Optimization Problems

• We have to choose one solution out of many
– a one with the optimal (minimum or
maximum) value.

• A solution exhibits a structure
– It consists of a string of choices that were made –

what choices have to be made to arrive at an
optimal solution?

• The algorithms computes the optimal value
plus, if needed, the optimal solution

A simple problem: optimizing an itinerary

We want to go from city 0 to city n using buses.
The road goes through cities 1,2,…, n-1.
The cost of going from city i to city j is cij.
Assume monotonic paths only (all edges go forward).
What is the minimum cost of going from 0 to n?

Exponential number of paths possible

(2 choices at each station – may or may not change
buses there, n stations)

Important property: The optimal cost of going from (say)
2 to 9 has no relation with the same from 11 to 16.

Optimization Problems

• We have to choose one solution out of many
– a one with the optimal (minimum or
maximum) value.

• A solution exhibits a structure
– It consists of a string of choices that were made –

what choices have to be made to arrive at an
optimal solution?

• The algorithms computes the optimal value
plus, if needed, the optimal solution

A simple problem: optimizing an itinerary

We want to go from city 0 to city n using buses.
The road goes through cities 1,2,…, n-1.
The cost of going from city i to city j is cij.
Assume monotonic paths only (all edges go forward).
What is the minimum cost of going from 0 to n?

Exponential number of paths possible

(2 choices at each station – may or may not change
buses there, n stations)

Important property: The optimal cost of going from (say)
2 to 9 has no relation with the same from 11 to 16.

Optimizing an itinerary

We want to make local choices and remember them
systematically. Let T(j) be the minimum cost of going
from city 0 to city j. So T(n) is the answer.
What can we say about T(j)?

Suppose someone tells you the best last choice (go
from i to n). Does it help?

Suppose you also know the best way to go from 0 to i.

Then we can glue the solutions together and get the

optimal solution!

Maybe we should not expect so much 

Optimizing an itinerary

Note that T(i) is a smaller subproblem than T(n).

Perhaps we can solve T(i) recursively?
Then we know T(n) = cin +T(i)

When did T(i) go from a

cost to a subproblem?

How can you prevent assuming that you know the best
last choice?:

Take the minimum over all last choice possibilities!

Optimizing an itinerary: putting it all together

T(j) = min k [ckj +T(k)], k<j.

Why does this help at all?

Can systematically compute T(j);

Hopefully results in a polynomial-time algorithm

Q: What’s the right way to compute T(j)?

A: What’s easy? Well T(1), since it equals c01

Start from T(1). Then do T(2). Keep going until you reach
T(n). Each entry uses the recursion above.

Optimizing an itinerary: getting solutions

T(n) = minimum cost of going from 0 to n.
What is the sequence of steps?

Need to remember more information;
Specifically the sequence of choices made.

T(j) = min k [ckj +T(k)], k<j.
C(j) = arg min k

What’s the last choice? C(n).

What’s the next one? C(C(n)) !

The next one is C(C(C(n))). The next one is
C(C(C(C(n)))). Keep going until you hit 0.

Optimizing an itinerary: running time

T(n) = minimum cost of going from 0 to n.
What is the time required to compute T(n), assuming
T(1) through T(n-1) are known?

Computing T(j) takes (j) time.
Computing C(j) takes O(1) time.
So the algorithm takes (n2) time.

Next: an activity selection problem

• Two assembly lines, Ai, Bi, each with n stations.
• Each job must complete go through Ai or Bi for each i.
• Different costs for going from Ai to Bi+1, Ai to Ai+1, Bi to Bi+1 ,

Bi to Ai+1, start to A1, start to B1, An to exit, Bn to exit.

Exponential number of paths possible (2 choices, n stations)

Again, suppose you know the first choice. Does that help?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Again think recursively

Define f1[j] to be the cost of going to the jth station
on assembly line 1 from the start. Define f2[j]
similarly for assembly line 2. Then

f1[j] = e1 + a1,1 if j = 1
= min {f1[j-1]+a1,j, f2[j-1]+t2,j-1+a1,j} if j > 1

Similarly, for f2[j].
Finally
f* = min {f1[n]+x1, f2[n]+x2}

Express the cost of the remainder recursively.

Now assume you do not know the first choice!

Constructing the solution

As before, we need some extra storage and record
keeping to remember the choices made.

Running time

f1[j] = e1 + a1,1 if j = 1
= min {f1[j-1]+a1,j, f2[j-1]+t2,j-1+a1,j} if j > 1

Similarly, for f2[j]. Finally
f* = min {f1[n]+x1, f2[n]+x2}

How much time does it take to compute f*?

Constant amount of work to compute f1[j] , f2[j],
for each j, and for f*.

Total running time (n).

• Two matrices, A – n x m matrix and B – m x k
matrix, can be multiplied to get C with dimensions
n x k, using nmk scalar multiplications

• Problem: Compute a product of many matrices
efficiently

• Matrix multiplication is associative:
(AB)C = A(BC)

Multiplying Matrices

, , ,
1

m

i j i l l j
l

c a b


 
11 12

1311 12
21 22 22

2321 22
31 32

...

... ...

...

a a
bb b

a a c
bb b

a a

   
            

   

Multiplying Matrices (2)

• The parenthesization matters
• Consider A  B  C  D, where

– A is 30  1, B is 1  40, C is 40  10, D is 10  25
• Costs:

– (AB)C)D = 1200 + 12000 + 7500 = 20700
– (AB)(CD) = 1200 + 10000 + 30000 = 41200
– A((BC)D) = 400 + 250 + 750 = 1400

• We need to optimally parenthesize

1 2 1, where is a matrixn i i iA A A A d d   

Multiplying Matrices (3)

• Let M(i,j) be the minimum number of
multiplications necessary to compute

• Key observations
– The outermost parenthesis partition the

chain of matrices (i,j) at some k, (ik<j):
(Ai… Ak)(Ak+1… Aj)

– The optimal parenthesization of matrices
(i,j) has optimal parenthesizations on either
side of k: for matrices (i,k) and (k+1,j)

j

k
k i

A



Multiplying Matrices (4)

• We try out all possible k. Recurrence:

• A direct recursive implementation is
exponential – there is a lot of duplicated work
(why?)

• But there are only
different subproblems (i,j), where 1 i  j  n

 1

(,) 0

(,) min (,) (1,)i k j i k j

M i i

M i j M i k M k j d d d  



   

2()
2
n

n n
 

   
 

Multiplying Matrices (5)

Thus, it requires only (n2) space to store the
optimal cost M(i,j) for each of the subproblems:
half of a 2-d array M[1..n,1..n].

Matrix-Chain-Order(d0…dn)
1 for i1 to n do
2 M[i,i] 
3 for l2 to n do
4 for i1 to n-l+1 do
5 j i+l-1
6 M[i,j] 
 for ki to j-l do
8 q M[i,k]+M[k+1,j]+di-1dkdj
9 if q < M[i,j] then
10 M[i,j] q
11 s[i,j] k
12 return M, s

Matrix-Chain-Order(d0…dn)
1 for i1 to n do
2 M[i,i] 
3 for l2 to n do
4 for i1 to n-l+1 do
5 j i+l-1
6 M[i,j] 
 for ki to j-l do
8 q M[i,k]+M[k+1,j]+di-1dkdj
9 if q < M[i,j] then
10 M[i,j] q
11 s[i,j] k
12 return M, s

Multiplying Matrices

• After execution: M[1,n] contains the value of the
optimal solution and c contains optimal
subdivisions (choices of k) of any subproblem into
two subsubproblems.

• A simple recursive algorithm Print-Optimal-
Parents(c, i, j) can be used to reconstruct an
optimal parenthesization.

• Exercise: Hand run the algorithm on
d = [10, 20, 3, 5, 30]

Multiplying Matrices

• Running time
– we are filling up a table with n2 entries;

each take (n) work.
– So, the running time is (n3).

• From exponential time to polynomial.

Memoization

• If we still like recursion very much, we can
structure our algorithm as a recursive algorithm:
– Initialize all M[i,j] to  and call Lookup-Chain(d, i, j)

Lookup-Chain(d,i,j)
1 if M[i,j] < then
2 return m[i,j]
3 if i=j then
4 m[i,j] 0
5 else for k i to j-1 do
6 q Lookup-Chain(d,i,k)
7 + Lookup-Chain(d,k+1,j)+di-1dkdj
7 if q < M[i,j] then
8 M[i,j] q
9 return M[i,j]

Lookup-Chain(d,i,j)
1 if M[i,j] < then
2 return m[i,j]
3 if i=j then
4 m[i,j] 0
5 else for k i to j-1 do
6 q Lookup-Chain(d,i,k)
7 + Lookup-Chain(d,k+1,j)+di-1dkdj
7 if q < M[i,j] then
8 M[i,j] q
9 return M[i,j]

Applicability

Can we always apply dynamic programming?

No, certain conditions must hold.

Dynamic Programming

To apply dynamic programming, we have to:
1. Show optimal substructure – an optimal solution to

the problem contains within it optimal solutions to
sub-problems

• Solution to a problem:
– Making a choice out of a number of possibilities

(look what possible choices there can be)
– Solving one or more sub-problems that are the

result of a choice (characterize the space of sub-
problems)

• Show that solutions to sub-problems must
themselves be optimal for the whole solution to be
optimal (use “cut-and-paste” argument)

Dynamic Programming (2)

2. Write a recurrence for the value of an optimal
solution
• Mopt = minover all choices k {(Sum of Mopt of all

sub-problems, resulting from choice k) + (the
cost associated with making the choice k)}

• Show that the number of different instances
of sub-problems is bounded by a polynomial

Dynamic Programming (3)

3. Compute the value of an optimal solution in a
bottom-up fashion, so that you always have the
necessary sub-results pre-computed (or use
memoization)

– See if it is possible to reduce the space requirements,
by “forgetting” solutions to sub-problems that will not be
used any more

4. Construct an optimal solution from computed
information (which records a sequence of
choices made that lead to an optimal solution).

Longest Common Subsequence

• Two text strings are given: X and Y
• There is a need to quantify how similar

they are:
– Comparing DNA sequences in studies of

evolution of different species
– Spell checkers

• One of the measures of similarity is the
length of a Longest Common
Subsequence (LCS)

LCS: Definition

• Z is a subsequence of X, if it is possible to
generate Z by skipping some (possibly none)
characters from X

• For example: X =“ACGGTTA”, Y=“CGTAT”,
LCS(X,Y) = “CGTA” or “CGTT”

• To solve LCS problem we have to find “skips”
that generate LCS(X,Y) from X, and “skips”
that generate LCS(X,Y) from Y

LCS: Optimal substructure

• We make Z to be empty and proceed from
the ends of Xm=“x1 x2 …xm” and
Yn=“y1 y2 …yn”
– If xm=yn, append this symbol to the beginning of

Z, and find optimally LCS(Xm-1, Yn-1)
– If xmyn,

• Skip either a letter from X
• or a letter from Y
• Decide which decision to do by comparing

LCS(Xm, Yn-1) and LCS(Xm-1, Yn)
– “Cut-and-paste” argument

LCS: Recurrence

• The algorithm could be easily extended by
allowing more “editing” operations in addition to
copying and skipping (e.g., changing a letter)

• Let c[i,j] = LCS(Xi, Yj)

• Observe: conditions in the problem restrict sub-
problems (What is the total number of sub-
problems?)

0 if 0 or 0
[,] [1, 1] 1 if , 0 and

max{ [, 1], [1,]} if , 0 and
i j

i j

i j
c i j c i j i j x y

c i j c i j i j x y

  
     
    

LCS: Compute the optimum

LCS-Length(X, Y, m, n)
1 for i1 to m do
2 c[i,0] 
3 for j0 to n do
4 c[0,j] 
5 for i1 to m do
6 for j1 to n do
7 if xi = yj then
8 c[i,j] c[i-1,j-1]+1
9 b[i,j] ”copy”
10 else if c[i-1,j]  c[i,j-1] then
11 c[i,j] c[i-1,j]
12 b[i,j] ”skip x”
13 else
14 c[i,j] c[i,j-1]
15 b[i,j] ”skip y”
16 return c, b

LCS-Length(X, Y, m, n)
1 for i1 to m do
2 c[i,0] 
3 for j0 to n do
4 c[0,j] 
5 for i1 to m do
6 for j1 to n do
7 if xi = yj then
8 c[i,j] c[i-1,j-1]+1
9 b[i,j] ”copy”
10 else if c[i-1,j]  c[i,j-1] then
11 c[i,j] c[i-1,j]
12 b[i,j] ”skip x”
13 else
14 c[i,j] c[i,j-1]
15 b[i,j] ”skip y”
16 return c, b

LCS: Example

• Lets run: X =“ACGGTTA”, Y=“CGTAT”
• How much can we reduce our space

requirements, if we do not need to
reconstruct LCS?

The Knapsack Problem

• Given different items, take as much of each
as required so that
– The total capacity of the knapsack is not exceeded
– The payoff from the items is maximized

• Two versions:
– Continuous – can take real-valued amounts of

each item
– Discrete or 0/1 – each item must be taken or not

taken (no fractional quantities)
• A simple greedy algorithm works for the

continuous version (Ch 16)

0/1 Knapsack: the greedy algorithm fails

0/1 Knapsack

Recurrence
c[i,w] = 0 if i=0 or w=0

= c[i-1,w] if wi >w
= max{vi+c[i-1,w-wi],c[i-1,w]} if i > 0, w  wi

Optimal substructure:

0/1 Knapsack – Dynamic Programming solution

DP-0/1-Knapsack(v,w,n,W)
for w =0 to W { c[0,w] = 0 }
for i=1 to n {

c[i,0]=0
for w=1 to W {

if(wi  w) {
if(vi+c[i-1,w-wi]>c[i-1,w])

c[i,w] = vi + c[i-1,w-wi]
else c[i,w] = c[i-1,w]

}//end if
else c[i,w] = c[i-1,w]

} //end for w } //end for i

More DP problems

• Longest increasing subsequence
• Rod cutting
• Coin changing
• Snowboarding problem
• More problems in homework, practice problems.

Longest increasing subsequence

Given an array of distinct integers, to find the longest
increasing subsequence.

• Choice ?
• Recurrence?

Rod cutting

Given a table of length vs costs calculate the optimal
cuts to a given rod.

• Choice ?
• Recurrence?

Coin changing

Given an amount and a set of denominations, to make
change with the fewest number of coins.

• Choice ?
• Recurrence?

Trickier problem

The snow boarding problem : Find the longest path on a grid.
One can slide down from one point to a connected other one if
and only if the height decreases. One point is connected to
another if it's at left, at right, above or below it. Example:

1 2 3 4 5

16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

• Choice ?
• Recurrence?

Elevator scheduling problem

There is a slow elevator that will only make up to k
stops. The building has more than k floors. Find the
floors that it should stop at to minimize the sum of the
number of floors people have to climb up or down.

• Choice ?
• Recurrence?

