The maximum-subarray problem

- Given an array of integers, find a contiguous subarray with the maximum sum.
- Very naïve algorithm:
- Brute force algorithm:

• At best, $\theta(n^2)$ time complexity

Can we do divide and conquer?

- Want to use answers from left and right half subarrays.
- Problem: The answer may not lie in either!
- Key question: What information do we need from (smaller) subproblems to solve the big problem?
- Related question: how do we get this information?

A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:

- T(1) = C, and for n>1
- $T(n) = 2T(n/2) + \theta(n)$

•
$$T(n) = \theta(n \log n)$$

More divide and conquer : Merge Sort

- **Divide**: If *S* has at least two elements (nothing needs to be done if *S* has zero or one elements), remove all the elements from *S* and put them into two sequences, S_1 and S_2 , each containing about half of the elements of *S*. (i.e. S_1 contains the first $\lceil n/2 \rceil$ elements and S_2 contains the remaining $\lfloor n/2 \rfloor$ elements).
- Conquer: Sort sequences S₁ and S₂ using Merge Sort.
- Combine: Put back the elements into S by merging the sorted sequences S₁ and S₂ into one sorted sequence

Merge Sort: Algorithm

```
Merge-Sort(A, p, r)
if p < r then
    q←(p+r)/2
    Merge-Sort(A, p, q)
    Merge-Sort(A, q+1, r)
    Merge(A, p, q, r)</pre>
```

Merge(A, p, q, r)
 Take the smallest of the two topmost elements of
 sequences A[p..q] and A[q+1..r] and put into the
 resulting sequence. Repeat this, until both sequences
 are empty. Copy the resulting sequence into A[p..r].

CSE 3101

CSE 3101

Merge Sort: summary

- To sort *n* numbers
 - if n=1 done!
 - recursively sort 2 lists of numbers $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$ elements
 - merge 2 sorted lists in $\Theta(n)$ time
- Strategy
 - break problem into similar (smaller) subproblems
 - recursively solve subproblems
 - combine solutions to answer

Output.

CSE 3101

Recurrences

- Running times of algorithms with Recursive calls can be described using recurrences
- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs

Example: Merge Sort

 $T(n) = \begin{cases} \text{solving_trivial_problem} & \text{if } n = 1\\ \text{num_pieces } T(n/\text{subproblem_size_factor}) + \text{dividing} + \text{combining} & \text{if } n > 1 \end{cases}$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

5/21/2013

CSE 3101

Solving recurrences

- Repeated substitution method
 - Expanding the recurrence by substitution and noticing patterns
- Substitution method
 - guessing the solutions
 - verifying the solution by the mathematical induction
- Recursion-trees
- Master method
 - templates for different classes of recurrences

Repeated Substitution Method

Let's find the running time of merge sort (let's assume that n=2^b, for some b).

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

$$T(n) = 2T(n/2) + n \quad \text{substitute}$$

$$= 2(2T(n/4) + n/2) + n \quad \text{expand}$$

$$= 2^2T(n/4) + 2n \quad \text{substitute}$$

$$= 2^2(2T(n/8) + n/4) + 2n \quad \text{expand}$$

$$= 2^3T(n/8) + 3n \quad \text{observe the pattern}$$

$$T(n) = 2^iT(n/2^i) + in$$

$$= 2^{\lg n}T(n/n) + n\lg n = n + n\lg n$$

Repeated Substitution Method

- The procedure is straightforward:
 - Substitute
 - Expand
 - Substitute
 - Expand
 - …
 - Observe a pattern and write how your expression looks after the *i*-th substitution
 - Find out what the value of *i* (e.g., lg *n*) should be to get the base case of the recurrence (say *T*(1))
 - Insert the value of T(1) and the expression of *i* into your expression

Solve
$$T(n) = 4T(n/2) + n$$

1) Guess that $T(n) = O(n^3)$, i.e., that T of the form cn^3
2) Assume $T(k) \le ck^3$ for $k \le n/2$ and
3) Prove $T(n) \le cn^3$ by induction
 $T(n) = 4T(n/2) + n$ (recurrence)
 $\le 4c(n/2)^3 + n$ (ind. hypoth.)
 $= \frac{c}{2}n^3 + n$ (simplify)
 $= cn^3 - \left(\frac{c}{2}n^3 - n\right)$ (rearrange)
 $\le cn^3$ if $c \ge 2$ and $n \ge 1$ (satisfy)
Thus $T(n) = O(n^3)!$
Subtlety: Must choose c big enough to handle
 $T(n) = \Theta(1)$ for $n < n_0$ for some n_0

• Achieving tighter bounds

Try to show $T(n) = O(n^2)$ Assume $T(k) \le ck^2$ T(n) = 4T(n/2) + n $\le 4c(n/2)^2 + n$ $= cn^2 + n$ $\le cn^2$ for no choice of c > 0.

The problem: We could not rewrite the equality

$$T(n) = cn^2 +$$
(something positive)

as:

$$T(n) \le cn^2$$

in order to show the inequality we wanted

Sometimes to prove inductive step, try to strengthen your hypothesis

 $-T(n) \le (answer you want) - (something > 0)$

 Corrected proof: the idea is to strengthen the inductive hypothesis by subtracting lower-order terms!

Assume
$$T(k) \le c_1 k^2 - c_2 k$$
 for $k < n$
 $T(n) = 4T(n/2) + n$
 $\le 4(c_1(n/2)^2 - c_2(n/2)) + n$
 $= c_1 n^2 - 2c_2 n + n$
 $= c_1 n^2 - c_2 n - (c_2 n - n)$
 $\le c_1 n^2 - c_2 n$ if $c_2 \ge 1$

Recursion Tree

- A recursion tree is a convenient way to visualize what happens when a recurrence is iterated
- Construction of a recursion tree

 $T(n) = T(n/4) + T(n/2) + n^{2}$

CSE 3101

Recursion Tree

167

Master Method

The idea is to solve a class of recurrences that have the form

T(n) = aT(n/b) + f(n)

- $a \ge 1$ and b > 1, and f is asymptotically positive!
- Abstractly speaking, T(n) is the runtime for an algorithm and we know that
 - a subproblems of size n/b are solved recursively, each in time T(n/b)
 - f(n) is the cost of dividing the problem and combining the results. In merge-sort

$$T(n) = 2T(n/2) + \Theta(n)$$

Master method

Master method

- Number of leaves:
- Iterating the recurrence, expanding the tree yields

$$a^{\log_b n} = n^{\log_b a}$$

$$T(n) = f(n) + aT(n/b)$$

$$= f(n) + af(n/b) + a^2T(n/b^2)$$

$$= f(n) + af(n/b) + a^2T(n/b^2) + ...$$

$$+ a^{\log_b n - 1} f(n/b^{\log_b n - 1}) + a^{\log_b n}T(1)$$

Thus,

$$T(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) + \Theta(n^{\log_b a})$$

- The first term is a division/recombination cost (totaled across all levels of the tree)
- The second term is the cost of doing all $n^{\log_b a}$ subproblems of size 1 (total of all work pushed to leaves)

5/21/2013

Master method intuition

- Three common cases:
 - Running time dominated by cost at leaves
 - Running time evenly distributed throughout the tree
 - Running time dominated by cost at root
- Consequently, to solve the recurrence, we need only to characterize the dominant term
- In each case compare f(n) with $O(n^{\log_b a})$

Master method Case 1

• $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$ - f(n) grows polynomially (by factor n^{ε}) slower than $n^{\log_b a}$

• The work at the leaf level dominates

- Summation of recursion-tree levels $O(n^{\log_b a})$
- Cost of all the leaves $\Theta(n^{\log_b a})$
- Thus, the overall cost $\Theta(n^{\log_b a})$

Master method Case 2

•
$$f(n) = \Theta(n^{\log_b a} \lg n)$$

- $f(n)$ and $n^{\log_b a}$ are asymptotically the same

• The work is distributed equally throughout the tree $T(n) = \Theta(n^{\log_b a} \lg n)$

- (level cost) \times (number of levels)

Master method Case 3

- $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ - Inverse of Case 1
 - -f(n) grows polynomially faster than $n^{\log_b a}$
 - Also need a regularity condition $\exists c < 1 \text{ and } n_0 > 0 \text{ such that } af(n/b) \le cf(n) \forall n > n_0$
- The work at the root dominates

 $T(n) = \Theta(f(n))$

Master Theorem Summarized

• Given a recurrence of the form T(n) = aT(n/b) + f(n)

1.
$$f(n) = O\left(n^{\log_{b} a - \varepsilon}\right)$$
$$\Rightarrow T(n) = \Theta\left(n^{\log_{b} a}\right)$$
2.
$$f(n) = \Theta\left(n^{\log_{b} a}\right)$$
$$\Rightarrow T(n) = \Theta\left(n^{\log_{b} a} \lg n\right)$$
3.
$$f(n) = \Omega\left(n^{\log_{b} a + \varepsilon}\right) \text{ and } af(n/b) \le cf(n), \text{ for some } c < 1, n > n_{0}$$
$$\Rightarrow T(n) = \Theta\left(f(n)\right)$$

 The master method cannot solve every recurrence of this form; there is a gap between cases 1 and 2, as well as cases 2 and 3

Using the Master Theorem

- Extract a, b, and f(n) from a given recurrence
- Determine $n^{\log_b a}$
- Compare f(n) and $n^{\log_b a}$ asymptotically
- Determine appropriate MT case, and apply
- Example merge sort

$$T(n) = 2T(n/2) + \Theta(n)$$

$$a = 2, \ b = 2; \ n^{\log_b a} = n^{\log_2 2} = n = \Theta(n)$$

Also $f(n) = \Theta(n)$

$$\Rightarrow \text{Case 2:} \ T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n \lg n)$$

Examples

$$T(n) = T(n/2) + 1$$

$$a = 1, b = 2; n^{\log_2 1} = 1$$

also $f(n) = 1, f(n) = \Theta(1)$

$$\Rightarrow \text{Case 2: } T(n) = \Theta(\lg n)$$

```
Binary-search(A, p, r, s):
  q←(p+r)/2
  if A[q]=s then return q
  else if A[q]>s then
     Binary-search(A, p, q-1, s)
  else Binary-search(A, q+1, r, s)
```

$$T(n) = 9T(n/3) + n$$

$$a = 9, b = 3;$$

$$f(n) = n, f(n) = O(n^{\log_3 9 - \varepsilon}) \text{ with } \varepsilon = 1$$

$$\Rightarrow \text{Case 1: } T(n) = \Theta(n^2)$$

5/21/2013

Examples

$$T(n) = 3T(n/4) + n \lg n$$

$$a = 3, b = 4; \ n^{\log_4 3} = n^{0.793}$$

$$f(n) = n \lg n, \ f(n) = \Omega(n^{\log_4 3 + \varepsilon}) \text{ with } \varepsilon \approx 0.2$$

$$\Rightarrow \text{Case 3:}$$

Regularity condition

 $af(n/b) = 3(n/4) \lg(n/4) \le (3/4)n \lg n = cf(n) \text{ for } c = 3/4$ $T(n) = \Theta(n \lg n)$

$$T(n) = 2T(n/2) + n \lg n$$

$$a = 2, b = 2; \ n^{\log_2 2} = n^1$$

$$f(n) = n \lg n, \ f(n) = \Omega(n^{1+\varepsilon}) \text{ with } \varepsilon ?$$

also $n \lg n/n^1 = \lg n$
 \Rightarrow neither Case 3 nor Case 2!
 $5/21/2013$ CSE 3101

Examples

$$T(n) = 4T(n/2) + n^{3}$$

$$a = 4, b = 2; n^{\log_{2} 4} = n^{2}$$

$$f(n) = n^{3}; f(n) = \Omega(n^{2})$$

$$\Rightarrow \text{Case 3: } T(n) = \Theta(n^{3})$$

Checking the regularity condition $4f(n/2) \le cf(n)$ $4n^3/8 \le cn^3$ $n^3/2 \le cn^3$ c = 3/4 < 1

A quick review of logarithms

Properties to remember

- 1. $\log(ab) = \log a + \log b$
- 2. $\log (a/b) = \log a \log b$
- 3. $\log(1/a) = -\log a$
- 4. $\log a^n = n \log a$
- 5. $a = 2^{\log_2 a}$

It follows that :

- 1. $n^n = 2^{n \log_2 n}$
- 2. $2^{n} n = 2^{n + \log_2 n}$
- 3. $n \log_2 n = 2 (\log_2 n)^2$

Next...

- 1. Covered basics of a simple design technique (Divideand-conquer) – Ch. 4 of the text.
- 2. Next, more sorting algorithms.