
5/14/2013 CSE 3101 Lecture 1 67

Next: Correctness

• How can we show that the algorithm works
correctly for all possible inputs of all possible
sizes?

• Exhaustive testing not feasible.
• Analytical techniques are useful essential

here.

5/14/2013 CSE 3101 Lecture 1 68

Q1. Find the max of n numbers (stored in array A)
Formal specs:
INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that A[j]  m,

1  j  length(A)

Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Find-max revisited

5/14/2013 CSE 3101 Lecture 1 69

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m  A[j],

1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof 1 [by contradiction]: Suppose the algorithm is incorrect. Then
for some input A,
(a) max is not an element of A or
(b) (j | max < A[j]).
max is initialized to and assigned to elements of A – so (a) is
impossible. WHY?
(b) After the jth iteration of the for-loop (lines 2 – 4), max  A[j].
From lines 3,4, max only increases.
Therefore, upon termination, max  A[j], which contradicts (b).

Prove that for any valid
Input, the output of
Find-max satisfies the
output condition.

Correctness Proof 1

5/14/2013 CSE 3101 Lecture 1 70

Correctness Proof 1 - comments

• The preceding proof reasons about the whole
algorithm

• It is possible to prove correctness by induction as
well: this is left as an exercise for you.

• What if the algorithm/program was very big and had
many function calls, nested loops, if-then’s and other
standard features?

• Need a simpler, more “modular” strategy.

5/14/2013 CSE 3101 Lecture 1 71

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m  A[j],

1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof 2 [use loop invariants]:
(identify invariant) At the beginning of iteration j of for loop, max contains the

maximum of A[1..j-1].
(Proof) Clearly true for j=2. For j = 3,4,…, assume that invariant holds for j-1.

So at the beginning of iteration j-1 max contains the maximum of A[1..j-2].
Case (a) A[j-1] is the maximum of A[1..j-1]. In lines 3,4, max is set to A[j-1].
Case (b) A[j-1] is not the maximum of A[1..j-1], so the maximum of A[1..j-1] is

in A[1..j-2]. By our assumption max already has this value and by lines 3-4
max is unchanged in this iteration.

Prove that for any valid
Input, the output of
Find-max satisfies the
output condition.

Correctness Proof – 2 (typos fixed)

5/14/2013 CSE 3101 Lecture 1 72

INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that m  A[j],

1  j  length(A)
Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Proof using loop invariants - continued:
We proved that the invariant holds at the beginning of iteration j
for each j used by Find-max.

Upon termination, j = length(A)+1. (WHY?)
The invariant holds, and so max contains the maximum of A[1..n]
-- STRUCTURED PROOF TECHNIQUE!
-- VERY SIMILAR TO INDUCTION!

We will see more non-trivial examples later.

Correctness Proof – continued

5/14/2013 CSE 3101 Lecture 1 73

More about correctness

• Don’t tack on a formal proof of correctness after coding
to make the professor happy.

• It need not be mathematical mumbo jumbo.
• Goal: To think about algorithms in such way that their

correctness is transparent.

1. Iterative Algorithms 2. Recursive Algorithms

“Take one step at a time
towards the final destination” LATER.

loop (until done)

take step

end loop

5/14/2013 CSE 3101 Lecture 1 74

A good way to structure many programs:
– Store the key information you currently know in

some data structure.
– In the main loop,

• take a step forward towards destination
by making a simple change to this data.

Loop invariants

5/14/2013 CSE 3101 Lecture 1 75

Insertion sort - correctness

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

What is a good loop invariant?

It is easy to write a loop invariant if you understand what
the algorithm does.

Use assertions.

5/14/2013 CSE 3101 Lecture 1 76

An assertion is a statement about the current state of
the data structure that is either true or false.

Useful for
– thinking about algorithms
– developing
– describing
– proving correctness

An assertion is not a task for the algorithm to perform.
It is only a comment that is added for the benefit of the
reader.

Assertions

An assertion need not
consist of formal/math
mumbo jumbo

Use an informal description

5/14/2013 CSE 3101 Lecture 1 77

Example of Assertions
• Preconditions: Any assumptions that must be true

about the input instance.
• Postconditions: The statement of what must be true

when the algorithm/program returns.
Correctness:

<PreCond> & <code>  <PostCond>

If the input meets the preconditions,
then the output must meet the postconditions.

If the input does not meet the preconditions,
then nothing is required.

Assertions – contd.

5/14/2013 CSE 3101 Lecture 1 78

Example of Assertions
Assertions – contd.

<preCond>
codeA
loop

<loop-invariant>
exit when <exit Cond>
codeB

endloop
codeC
<postCond>

5/14/2013 CSE 3101 Lecture 1 79

We must show three things about loop invariants:
 Initialization – it is true prior to the first iteration
 Maintenance – if it is true before an iteration, it

remains true before the next iteration
 Termination – when loop terminates the invariant

gives a useful property to show the correctness of
the algorithm

Proves that IF the program terminates then it works

Partial Correctness &
Termination

Partial correctness

Correctness

5/14/2013 CSE 3101 Lecture 1 80

Correctness of Insertion sort

for j=2 to length(A)
do key=A[j]

//Insert A[j] into the sorted
//sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

//Insert A[j] into the sorted
//sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Invariant: at the start of
for loop iteration j, A[1…j-
1] consists of elements
originally in A[1…j-1] but in
sorted order

Initialization: j = 2, the invariant trivially holds because
A[1] is a sorted array 

5/14/2013 CSE 3101 Lecture 1 81

Correctness of Insertion sort – contd.

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Invariant: at the start of
for loop iteration j, A[1…j-
1]
consists of elements
originally in A[1…j-1] but in
sorted order

Maintenance: the inner while loop moves elements A[j-1],
A[j-2], …, A[k] one position right without changing their
order. Then the former A[j] element is inserted into kth

position so that A[k-1]  A[k]  A[k+1].

A[1…j-1] sorted + A[j]  A[1…j] sorted

5/14/2013 CSE 3101 Lecture 1 82

Correctness of Insertion sort – contd.

for j=2 to length(A)
do key=A[j]

Insert A[j] into the sorted
sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

Insert A[j] into the sorted
sequence A[1..j-1]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Invariant: at the start of
for loop iteration j, A[1…j-
1]
consists of elements
originally in A[1…j-1] but in
sorted order

Termination: the loop terminates, when j=n+1.
Then the invariant states: “A[1…n] consists of elements
originally in A[1…n] but in sorted order” 

5/14/2013 CSE 3101 Lecture 1 83

1. Spent some time formalizing asymptotic notation.
2. Have seen insertion-sort and loop invariants for it.

The invariant falls under the “more of the input” class in
Jeff Edmonds’ notation.

3. Next, selection sort; the invariant for this falls under the
“more of the output” class in Jeff Edmonds’ notation.

More on correctness of iterative algorithms

5/14/2013 CSE 3101 Lecture 1 84

Recall that
1. Loop invariants allow you to reason about a single

iteration of the loop.
2. The test condition of the loop is not part of the invariant.
3. Design the loop invariant so that when the termination

condition is attained, and the invariant is true, then the
goal is reached: invariant + termination => goal

4. Create invariants which are
-- simple, and
-- capture all the goals of the algorithm (except
termination)

It is best to use mathematical symbols for loop invariants;
when this is too complicated, use clear prose and
common sense.

Loop invariants

It takes practice

5/14/2013 CSE 3101 Lecture 1 85

I/O specs: same as insertion sort

Algorithm: Given an array A of n integers, sort them by
repetitively selecting the smallest among the yet
unselected integers.

Loop invariant: at the beginning of the jth iteration
• The smallest j-1 values are sorted in descending order

in locations [1,j-1]

See if you can prove it.

Selection sort

Is this precise enough?
Swap the smallest integer with the integer currently in the
place where the smallest integer should go.

•Is this enough? No….

and the rest are in locations [n-j,n].

5/14/2013 CSE 3101 Lecture 1 86

Another kind of loop invariant

Narrowed the search space, e.g. Binary search
•Preconditions

–Key 25
–Sorted List

•Postcondition
–Find key in list (if present).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

5/14/2013 CSE 3101 Lecture 1 87

Define Loop Invariant

• Maintain a sublist.
• If the key is contained in the original list, then the key is

contained in the sublist.
Define an iteration of loop

•Cut sublist in half.
•Determine which half the key would be in.
•Keep that half.
Caveat:
Invariant must not assume that the element is present in
the list. So it should say something like
“If the key is contained in the original list, then the key is
contained in the sublist.”

5/14/2013 CSE 3101 Lecture 1 88

Define an iteration of loop – contd.

key 25

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

It is faster not to check if the middle element is the key.

5/14/2013 CSE 3101 Lecture 1 89

The devil is in the details…

• Maintain a sublist with end points i & j

i j

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Does not matter which, but you need to be consistent.

•If the sublist has even length, which element is taken to
be mid?

Does not matter – choose right.

5/14/2013 CSE 3101 Lecture 1 90

An easy mistake…

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid, then
key is in left half:
[i,mid-1].

If key > mid, then
key is in right half:
[mid,j]

If the middle element is the key, it can be skipped over!

5/14/2013 CSE 3101 Lecture 1 91

A fix…

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half: [i,mid-1].

If key > mid,
then key is in
right half: [mid,j].

5/14/2013 CSE 3101 Lecture 1 92

Another possible fix…

• making the left half slightly bigger.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid, then key
is in left half: [i,mid].

If key > mid, then key is
in right half: [mid+1,j].

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

No progress is made. Loop for ever!

5/14/2013 CSE 3101 Lecture 1 93

Lessons to be learnt

• Use the loop invariant method to think about
algorithms.

• Be careful with your definitions.
• Be sure that the loop invariant is always maintained.
• Be sure progress is always made.

5/14/2013 CSE 3101 Lecture 1 94

Running time of binary search

From now, we will omit details about accounting for
running time as follows. The details are tedious but can
be supplied easily. We will also ignore floors and
ceilings. This usually makes no difference.

The sublist is of size n, n/2, n/4, n/8,…,1. How many
steps is that?

Each step takes (1) time.

Total running time = (log n)

5/14/2013 CSE 3101 Lecture 1 95

Pseudocode for binary search

5/14/2013 CSE 3101 Lecture 1 96

Next: Some mathematical tools

• Important to have the right tools
• Still, these are only tools; necessary but not

sufficient to solve problems.

• We will cover some essential tools in this
course for your repertoire.

5/14/2013 CSE 3101 Lecture 1 97

A Quick Math Review

• Geometric progression
– given an integer n0 and a real number 0< a  1

– geometric progressions exhibit exponential growth
• Arithmetic progression

1
2

0

11 ...
1

nn
i n

i

aa a a a
a






     



2

0
1 2 3 ...

2

n

i

n ni n



     

5/14/2013 CSE 3101 Lecture 1 98

Pictorial proofs of sums

5/14/2013 CSE 3101 Lecture 1 99

Review: Proof by Induction

• We want to show that property P is true for all
integers n  n0

• Basis: prove that P is true for n0

• Inductive step: prove that if P is true for all k
such that n0  k  n – 1 then P is also true for n

• Example

• Base case:
0

(1)() for 1
2

n

i

n nS n i n



  

1

0

1(1 1)(1)
2i

S i



 

5/14/2013 CSE 3101 Lecture 1 100

Proof by Induction (2)

0
1

0 0
2

(1)() for 1 k 1
2

() (1)

(1 1) (2)(1)
2 2

(1)
2

k

i
n n

i i

k kS k i n

S n i i n S n n

n n n nn n

n n





 


    

      

   
    






 

• Inductive Step

5/14/2013 CSE 3101 Lecture 1 101

Important thumbrules for sums

”addition made easy” – Jeff Edmonds.

Geometric like: f(i) = 2(i)   f(i) = (f(n))

Arithmetic like: i.f(i) = i (1)   f(i) = (nf(n))

Harmonic: f(i) = 1/i   f(i) = (log n)

Bounded tail: i.f(i) = 1/i(1)   f(i) = (1)
Use as thumbrules only

i=1

n

i=1

i=1

i=1

n

n

n

“Theta of last term”

no of terms x last term

“Theta of first term”

5/14/2013 CSE 3101 Lecture 1 102

Later: Some standard techniques

We will get into these techniques as and when we need
them. If you are interested, read Appendix A.

• Approximation with integrals :Derive, rather than
memorize the formula; e.g 1/k.

• Telescoping sum: 1/(k(k+1))
• Split a sum: k/2k

• Approximate crudely from both sides: e.g. 2k

• Integrate and differentiate series:kxk

5/14/2013 CSE 3101 Lecture 1 103

Recall the definition of GCD(a,b). Recall also the high-
school technique for computing GCD(a,b).

Key observation: if (a>b) GCD(a,b) = GCD(a – b, b)

How do you prove this?

GCD: iterative algorithms

Any divisor of a,b divides a-b!

5/14/2013 CSE 3101 Lecture 1 104

Try the new idea

Input: <a,b>
= 4Output: GCD(a,b)
= <64,44>

GCD(a,b) = GCD(a-b,b)

GCD(64,44) = GCD(20,44)

GCD(20,44) = GCD(44,20)

GCD(44,20) = GCD(24,20)

GCD(24,20) = GCD(4,20)
GCD(4,20) = GCD(20,4)
GCD(20,4) = GCD(16,4)
GCD(16,4) = GCD(12,4)

GCD(12,4) = GCD(8,4)

GCD(8,4) = GCD(4,4)

GCD(4,4) = GCD(0,4)

What is the running time?

5/14/2013 CSE 3101 Lecture 1 105

Running time for GCD(a,b)

Input: <a,b> = <9999999999999,2>
<x,y> = <9999999999999,2>

= <9999999999997,2>
= <9999999999995,2>
= <9999999999993,2>
= <9999999999991,2>

Time =
Size =

O(a)
n = O(log(a))

= 2O(n)

5/14/2013 CSE 3101 Lecture 1 106

A faster algorithm for GCD(a,b)

<x,y>  <x-y,y>
 <x-2y,y>
 <x-3y,y>
 <x-4y,y>
 <x-iy,y>
 <x rem y,y>
= <x mod y,y>
 <y,x mod y>

But x mod y < y

5/14/2013 CSE 3101 Lecture 1 107

Try the improvement

Input: <a,b> = <44,64>
<x,y> = <44,64>

= <64,44>
= <44,20>
= <20, 4>
= < 4, 0>

GCD(a,b) = 4

GCD(a,b) = GCD(b,a mod b)

5/14/2013 CSE 3101 Lecture 1 108

A bad example

Input: <a,b> = <10000000000001,9999999999999>

= <2,1>
= <1,0>

<x,y>
= <9999999999999,2>

GCD(a,b) = GCD(x,y) = 1

= <10000000000001,9999999999999>

Little progress
Lots of progress

Every two iterations:
the value x decreases by at least a factor of 2.
the size of x decreases by at least one bit.

Running time: O(log(a)+log(b)) = O(n)

Lots of progress

5/14/2013 CSE 3101 Lecture 1 109

GCD(a,b)

5/14/2013 CSE 3101 Lecture 1 110

A design paradigm

Divide and conquer

5/14/2013 CSE 3101 Lecture 1 111

INPUT: Two pairs of integers, (a,b), (c,d) representing
complex numbers, a+ib, c+id, respectively.

OUTPUT: The pair [(ac-bd),(ad+bc)] representing the
product (ac-bd) + i(ad+bc)

Naïve approach: 4 multiplications, 2 additions.
Suppose a multiplication costs $1 and an addition cost
a penny. The naïve algorithm costs $4.02.

Q: Can you do better?

Multiplying complex numbers
(from Jeff Edmonds’ slides)

5/14/2013 CSE 3101 Lecture 1 112

• m1 = ac
• m2 = bd
• A1 = m1 – m2 = ac-bd
• m3 = (a+b)(c+d) = ac + ad + bc + bd
• A2 = m3 – m1 – m2 = ad+bc
• Saves 1 multiplication! Uses more additions. The

cost now is $3.03.
• This is good (saves 25% multiplications), but it leads to

more dramatic asymptotic improvement elsewhere!
(aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers?

Gauss’ idea

5/14/2013 CSE 3101 Lecture 1 113

How to multiply two n-bit numbers.

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

Elementary
School algorithm

5/14/2013 CSE 3101 Lecture 1 114

How to multiply two n-bit numbers - contd.

X
* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

Elementary
School algorithm

Q: Is there a faster algorithm?

A: YES! Use divide-and-conquer.

5/14/2013 CSE 3101 Lecture 1 115

Divide and Conquer

Intuition:
•DIVIDE my instance to the problem into smaller
instances to the same problem.
•Recursively solve them.
•GLUE the answers together so as to obtain the answer
to your larger instance.
•Sometimes the last step may be trivial.

5/14/2013 CSE 3101 Lecture 1 116

Multiplication of two n-bit numbers

• X =
• Y =

• X = a 2n/2 + b Y = c 2n/2 + d

• XY = ac 2n + (ad+bc) 2n/2 + bd

a b

c d

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

RETURN

MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

5/14/2013 CSE 3101 Lecture 1 117

Time complexity of MULT

• T(n) = time taken by MULT on two n-bit numbers
• What is T(n)? Is it θ(n2)?
• Hard to compute directly
• Easier to express as a recurrence relation!
• T(1) = k for some constant k
• T(n) = 4 T(n/2) + c1n + c2 for some constants c1 and c2

• How can we get a θ() expression for T(n)?

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

RETURN

MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

5/14/2013 CSE 3101 Lecture 1 118

Time complexity of MULT

Make it concrete
• T(1) = 1
• T(n) = 4 T(n/2) + n

Technique 1: Guess and verify
T(n) = 2n2 –n
Holds for n=1
T(n) = 4 (2(n/2)2 –n/2 + n)

= 2n2 –n

5/14/2013 CSE 3101 Lecture 1 119

Time complexity of MULT
• T(1) = 1 & T(n) = 4 T(n/2) + n

Technique 2: Expand recursion
T(n) = 4 T(n/2) + n

= 4 (4T(n/4) + n/2) + n = 42T(n/4) + n + 2n
= 42(4T(n/8) + n/4) + n + 2n
= 43T(n/8) + n + 2n + 4n
= ………
= 4kT(1) + n + 2n + 4n + … + 2k-1n where 2k= n

GUESS
= n2 + n (1 + 2 + 4 + … + 2k-1)
= n2 + n (2k-1)
= 2 n2 - n [NOT FASTER THAN BEFORE]

5/14/2013 CSE 3101 Lecture 1 120

Gaussified MULT (Karatsuba 1962)

•T(n) = 3 T(n/2) + n
•Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

e = MULT(a,c) and f =MULT(b,d)

RETURN e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f

5/14/2013 CSE 3101 Lecture 1 121

Time complexity of Gaussified MULT

• T(1) = 1 & T(n) = 3 T(n/2) + n
Technique 2: Expand recursion
T(n) = 3 T(n/2) + n

= 3 (3T(n/4) + n/2) + n = 32T(n/4) + n + 3/2n
= 32(3T(n/8) + n/4) + n + 3/2n
= 33T(n/8) + n + 3/2n + (3/2)2n
= ………
= 3kT(1) + n + 3/2n + (3/2)2n + … + (3/2)k-1n where 2k= n
= 3 log2 n + n(1 + 3/2 + (3/2)2 + … + (3/2)k-1)
= n log2 3 + 2n ((3/2)k-1)
= n log2 3 + 2n (n log2 3 /n -1)
= 3n log2 3 - 2n

Not just 25% savings!
θ(n2) vs θ(n1.58..)

5/14/2013 CSE 3101 Lecture 1 122

Multiplication Algorithms

Kindergarten ?
n2n

Grade School n2

Karatsuba n1.58…

Fastest Known n logn loglogn

Show

3*4=3+3+3+3

5/14/2013 CSE 3101 Lecture 1 123

1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text.

2. Next, Strassen’s algorithm
3. Later: more design and conquer algorithms: MergeSort.

Solving recurrences and the Master Theorem.

Next…

Similar idea to multiplication in N, C

• Divide and conquer approach provides
unexpected improvements

Naïve matrix multiplication

SimpleMatrixMultiply (A,B)
1. N  A.rows
2. C  CreateMatrix(n,n)
3. for i  1 to n
4. for j  1 to n
5. C[i,j]  0
6. for k  1 to n
7. C[i,j]  C[i,j] + A[i,k]*B[k,j]
8. return C

• Argue that the running time is θ(n3)

First attempt and Divide & Conquer

Divide A,B into 4 n/2 x n/2 matrices
• C11 = A11 B11 + A12B21
• C12 = A11 B12 + A12B22
• C21 = A21 B11 + A22B21
• C22 = A21 B12 + A22B22

Simple Recursive implementation. Running time is
given by the following recurrence.

• T(1) = C, and for n>1
• T(n) = 8T(n/2) + θ(n2)
• θ(n3) time-complexity

Strassen’s algorithm

Avoid one multiplication (details on page 80)
(but uses more additions)

Recurrence:
• T(1) = C, and for n>1
• T(n) = 7T(n/2) + θ(n2)

• How can we solve this?
• Will see that T(n) = θ(nlg 7), lg 7 =2.8073….

