
5/7/2013 CSE 3101 Lecture 1 1

Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875

Lectures: Tues (Tel 0016), 7–10 PM

Office hours (Las/CSEB 3043): Tue 6-7 pm, Wed 4-6 pm
or by appointment.

Tutorials: TBA

TA: Xiwen Chen
Textbook: Cormen, Leiserson, Rivest, Stein.

Introduction to Algorithms (3nd Edition)
Note: Some slides in this lecture are adopted from Jeff Edmonds’
slides.

CSE 3101: Introduction to the Design and
Analysis of Algorithms

5/7/2013 CSE 3101 Lecture 1 2

Described in more detail on webpage
http://www.cse.yorku.ca/course/3101

Grading:
Quizzes: 2 X 10%
Final: 40%
Midterm (June 25): 20%
HW: 20% (At least 5 assignments)

Notes:
1. All assignments are individual.

Topics: Listed on webpage.

CSE 3101: Administrivia

5/7/2013 CSE 3101 Lecture 1 3

CSE 3101: More administrivia

Plagiarism: Will be dealt with very strictly. Read the
detailed policies on the webpage.

Handouts (including solutions): in /cs/course/3101

Grades: will be on ePost [you need a cse account for this].

Slides: Will usually be on the web the morning of the class.
The slides are for MY convenience and for helping you
recollect the material covered. They are not a
substitute for, or a comprehensive summary of, the
book.

Webpage: All announcements/handouts will be published
on the webpage -- check often for updates)

5/7/2013 CSE 3101 Lecture 1 4

CSE 3101: resources

• We will follow the textbook closely.
• There are more resources than you can possibly read

– including books, lecture slides and notes, online
texts, video lectures, assignments.

• Jeff Edmonds’ (www.cse.yorku.ca/~jeff) textbook has
many, many worked examples.

• Andy Mirzaian (www.cse.yorku.ca/~andy) has very
good notes and slides for this course

• The downloadable text by Parberry on Problems in
Algorithms (http://www.eng.unt.edu/ian/books/free/) is
an invaluable resource for testing your understanding

5/7/2013 CSE 3101 Lecture 1 5

Recommended strategy

• Practice instead of reading.
• Try to get as much as possible from the lectures.
• Try to listen more and write less in class.
• If you need help, get in touch with me early.
• If at all possible, try to come to the class with a fresh

mind.
• Keep the big picture in mind. ALWAYS.
• If you like challenging problems, and/or to improve

your problem solving ability, try programming contest
problems. http://www.cse.yorku.ca/acm

5/7/2013 CSE 3101 Lecture 1 6

The Big Picture for CSE3101

• The design and analysis of algorithms is a
FOUNDATIONAL skill -- needed in almost every field
in Computer Science and Engineering.

• Programming and algorithm design go hand in hand.
• Coming up with a solution to a problem is not of

much use if you cannot argue that the solution is
– Correct, and
– Efficient

5/7/2013 CSE 3101 Lecture 1 7

Imagine - 0

• You take up a job at a bank. Your group leader defines
the problem you need to solve. Your job is to design
an algorithm for a financial application that you did not
encounter in your classes.

• How do you go about this task?

Designing algorithms – knowledge of paradigms.

5/7/2013 CSE 3101 Lecture 1 8

Imagine - 1

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

You want your team to
implement your idea – one
of them brings you this
code and argues that
anyone should see that
this sorts an array of
numbers correctly.

How can you be sure?

Correctness proofs – reasoning about algorithms

5/7/2013 CSE 3101 Lecture 1 9

Imagine - 2

• Two members of your team have designed alternative
solutions to the problem you wanted them to solve.
Your job is to select the better solution and reward the
designer. There are serious consequences for the
company as well for the designer.

Efficiency of algorithms – algorithm analysis

5/7/2013 CSE 3101 Lecture 1 10

Imagine - 3

• Your boss asks you to solve a problem – the best
algorithm you can come up with is very slow. He
wants to know why you cannot do better.

Intractability : reasoning about problems

5/7/2013 CSE 3101 Lecture 1 11

Previous courses (1020,1030,2011): Given a problem,

1. Figure out an algorithm.
2. Code it, debug, test with “good” inputs.
3. Some idea of running time, asymptotic notation.
4. Study some well known algorithms:

e.g. QuickSort, Prim(MST), Dijkstra’s algorithm
5. Possibly: some idea of lower bounds.

Primary Objectives

5/7/2013 CSE 3101 Lecture 1 12

3101: Problem-solving, Reasoning about ALGORITHMS
1. Design of algorithms -- Some design paradigms.

Divide-and-Conquer, Greedy, Dynamic
Programming

2. Very simple data structures
Heaps

3. Correctness proofs.
Loop invariants

3. Efficiency analysis.

4. Comparison of algorithms (Better? Best?)

Primary objectives - continued

Machine-independent

Rigorous

5/7/2013 CSE 3101 Lecture 1 13

Reasoning about PROBLEMS:

1. Lower bounds.
“Is your algorithm the best possible?”
“No comparison-based sorting algorithm can
have running time better than (n log n)”.

2. Intractability: “The problem seems to be hard – is
it provably intractable?”

3. Complexity classes.
“Are there inherently hard problems?”
P vs NP

Primary objectives - continued

5/7/2013 CSE 3101 Lecture 1 14

A new way of thinking -- abstracting out the algorithmic
problem(s):

-- Extract the algorithmic problem and ignore the
“irrelevant” details

-- Focuses your thinking, more efficient problem solving

-- Programming contest problems teach this skill more
effectively than exercises in algorithms texts.

Secondary objectives

5/7/2013 CSE 3101 Lecture 1 15

1. Needed for correctness proofs
Pre-condition – post-condition framework; similar ideas
used in program verification, Computer-aided design.

2. Needed for performance analysis
Computation of running time

Specific topics
1. (Very) elementary logic.
2. (Occasionally) Elementary calculus.
3. Summation of series.
4. Simple counting techniques.
5. Simple proof techniques: Induction, proof by contradiction
6. Elementary graph theory

Role of mathematics

5/7/2013 CSE 3101 Lecture 1 16

1. Fact: Algorithms are always crucial
Applications:Computational Biology, Genomics

Data compression
Indexing and search engines
Cryptography
Web servers: placement, load balancing, mirroring
Optimization (Linear programming, Integer Programming)

2. Fact: Real programmers may not need algorithms……
but architects do!

3. Much more important fact: you must be able to
REASON about algorithms designed by you and
others. E.g., convincingly argue “my algorithm is correct”,
“my algorithm is fast”, “my algorithm is better than the existing
one”, “my algorithm is the best possible”, “our competitor cannot
possibly have a fast algorithm for this problem”,…

Why you should learn algorithms,
Or, Why this is a core course.

“Big data”

5/7/2013 CSE 3101 Lecture 1 17

1. Sorting a set of numbers (seen before)
2. Finding minimal spanning trees (seen before)
3. Matrix multiplication – compute A1A2A3A4….An

using the fewest number of multiplications
e.g.: A1 = 20 x 30, A2 = 30 x 60, A3 = 60 x 40,
(A1 A2) A3 => 20x 30 x 60 + 20 x 60 x 40 = 84000
A1 (A2 A3) => 20x 30 x 40 + 30 x 60 x 40 = 96000

4. Traveling Salesman Problem: Find the minimum weight
cycle in an weighted undirected graph which visits each
vertex exactly once and returns to the starting vertex

Brute force: find all possible permutations of the
vertices and compute cycle costs in each case. Find
the maximum. Q: Can we do better?

Some examples

5/7/2013 CSE 3101 Lecture 1 18

Pseudocode

• Machine/language independent statements.
• Very simple commands: assignment, equality tests,

branch statements, for/while loops, function calls.
• No objects/classes (usually).
• Comments, just like in real programs.
• Should be at a level that can be translated into a

program very easily.
• As precise as programs, without the syntax

headaches
• My notation can vary slightly from the book.

You can use pseudocode, English or a combination.

5/7/2013 CSE 3101 Lecture 1 19

1. I/O specs: Needed for correctness proofs, performance
analysis.
E.g. for sorting:
INPUT: A[1..n] - an array of integers
OUTPUT: a permutation B of A such that

B[1]  B[2]  ….  B[n]

2. CORRECTNESS: The algorithm satisfies the output
specs for EVERY valid input.

3. ANALYSIS: Compute the performance of the algorithm,
e.g., in terms of running time

Reasoning (formally) about algorithms

5/7/2013 CSE 3101 Lecture 1 20

Factors affecting algorithm performance

Importance of platform
• Hardware matters (memory hierarchy, processor

speed and architecture, network bandwidth, disk
speed,…..)

• Assembly language matters
• OS matters
• Programming language matters

Importance of input instance

Some instances are easier (algorithm dependent!)

5/7/2013 CSE 3101 Lecture 1 21

• Measures of efficiency:
–Running time
–Space used
– others, e.g., number of cache misses, disk
accesses, network accesses,….

• Efficiency as a function of input size (NOT value!)
–Number of data elements (numbers, points)
–Number of bits in an input number
e.g. Find the factors of a number n,

Determine if an integer n is prime
• Machine Model What machine do we assume? Intel?
Motorola? P4? Atom? GPU?

Analysis of Algorithms

5/7/2013 CSE 3101 Lecture 1 22

What is a machine-independent model?

• Need a generic model that models (approximately) all
machines

• Modern computers are incredibly complex.
• Modeling the memory hierarchy and network

connectivity generically is very difficult
• All modern computers are “similar” in that they

provide the same basic operations.
• Most general-purpose processors today have at most

eight processors. The vast majority have one or two.
GPU’s have tens or hundreds.

5/7/2013 CSE 3101 Lecture 1 23

The RAM model

• Generic abstraction of sequential computers
• RAM assumptions:

– Instructions (each taking constant time), we usually
choose one type of instruction as a characteristic
operation that is counted:

• Arithmetic (add, subtract, multiply, etc.)
• Data movement (assign)
• Control (branch, subroutine call, return)
• Comparison

– Data types – integers, characters, and floats
– Ignores memory hierarchy, network!

5/7/2013 CSE 3101 Lecture 1 24

Can we compute the running time on a RAM?

• Do we know the speed of this generic machine?
• If we did, will that say anything about the running time

of the same program on a real machine?
• What simplifying assumptions can we make?

5/7/2013 CSE 3101 Lecture 1 25

Idea: efficiency as a function of input size

• Want to make statements like, “the running time of an
algorithm grows linearly with input size”.

• Captures the nature of growth of running times, NOT
actual values

• Very useful for studying the behavior of algorithms for
LARGE inputs

• Aptly named Asymptotic Analysis

5/7/2013 CSE 3101 Lecture 1 26

Consider the problem of factoring an integer n
Note: Public key cryptosystems depend critically on
hardness of factoring – if you have a fast algorithm to
factor integers, most e-commerce sites will become
insecure!!

Trivial algorithm: Divide by 1,2,…, n/2 (n/2 divisions)
aside: think of an improved algorithm

Importance of input representation

Representation affects efficiency expression:
Let input size = S.

Unary: 1111…..1 (n times) -- S/2 multiplications (linear)
Binary: log2 n bits -- 2S-1 multiplications (exponential)
Decimal: log10 n digits -- 10S-1/2 multiplications (exponential)

5/7/2013 CSE 3101 Lecture 1 27

Q1. Find the max of n numbers (stored in array A)
Formal specs:
INPUT: A[1..n] - an array of integers
OUTPUT: an element m of A such that A[j]  m,

1  j  length(A)

Find-max (A)
1. max  A[1] How many comparisons?
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

Q2. Can you think of another algorithm? Take a minute….
How many comparisons does it take?

A simple example

Aside

• How many nodes does a binary tree with n leaves
have?

5/7/2013 CSE 3101 Lecture 1 28

Finding the maximum – contd.

• Proposition: Every full binary tree with n leaves has
n-1 internal nodes.
Proof: done on the board.

• Corollary: Any “tournament algorithm” to find the
maximum uses n-1 comparisons, as long it uses
each element exactly once in comparisons.

• Later: Every correct algorithm must use at least n-1
comparisons (this is an example of a lower bound)

5/7/2013 CSE 3101 Lecture 1 29

5/7/2013 CSE 3101 Lecture 1 30

Analysis of Find-max

Find-max (A)
1. max  A[1]
2. for j  2 to length(A)
3. do if (max < A[j])
4. max  A[j]
5. return max

cost
c1
c2
c3
c4
c5

times
1
n
n-1
0kn-1
1

COUNT the number of cycles (running time) as a
function of the input size

Running time (upper bound): c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
Running time (lower bound): c1 + c5 – c3 – c4 + (c2 + c3)n
Q: What are the values of ci?

5/7/2013 CSE 3101 Lecture 1 31

Best/Worst/Average Case Analysis

• Best case: A[1] is the largest element.
• Worst case: elements are sorted in increasing order
• Average case: ? Depends on the input characteristics
Q: What do we use?
A: Worst case or Average-case is usually used:

– Worst-case is an upper-bound; in certain
application domains (e.g., air traffic control,
surgery) knowing the worst-case time complexity
is of crucial importance

– Finding the average case can be very difficult;
needs knowledge of input distribution.

– Best-case is not very useful.

5/7/2013 CSE 3101 Lecture 1 32

Best/Worst/Average Case (2)

– For a specific size of input n, investigate running
times for different input instances:

1n

2n

3n

4n

5n

6n

5/7/2013 CSE 3101 Lecture 1 33

Best/Worst/Average Case (3)

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1 2 3 4 5 6 7 8 9 10 11 12 …..

best-case

average-case

worst-case

5/7/2013 CSE 3101 Lecture 1 34

Asymptotic notation : Intuition
Running time bound: c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
What are the values of ci? machine-dependent

A simpler expression: c6 + c7n [still complex].

Q: Can we throw away the lower order terms?
A: Yes, if we do not worry about constants, and there

exist constants c8, c9 such that c8n  c6 + c7n  c9n,
then we say that the running time is (n).

Need some mathematics to formalize this (LATER).

Q: Are we interested in small n or large?
A: Assume we are interested in large n – cleaner

theory, usually realistic. BUT, remember the
assumption when interpreting results!

5/7/2013 CSE 3101 Lecture 1 35

What does asymptotic analysis not predict?

• Exact run times
• Comparison for small instances
• Small differences in performance

5/7/2013 CSE 3101 Lecture 1 36

1. Covered basics of algorithm analysis (Ch. 1 of the text).
2. Next: Another example of algorithm analysis (Ch 2).

More about asymptotic notation (Ch. 3).

So far…

5/7/2013 CSE 3101 Lecture 1 37

Asymptotic notation - continued

Will do the relevant math later. For now, the intuition is:
1. O() is used for upper bounds “grows slower than”
2. () used for lower bounds “grows faster than”
3. () used for denoting matching upper and lower

bounds. “grows as fast as”
These are bounds on running time, not for the problem

The thumbrules for getting the running time are
1. Throw away all terms other than the most significant

one -- Calculus may be needed
e.g.: which is greater: n log n or n1.001 ?

2. Throw away the constant factor.
3. The expression is () of whatever’s left.

Asymptotic optimality – expression inside () best possible.

5/7/2013 CSE 3101 Lecture 1 38

INPUT: A[1..n] - an array of integers, k, 1 k length(A)
OUTPUT: an element m of A such that m is the kth largest
element in A.

Brute Force: Find the maximum, remove it. Repeat k-1 times.
Find maximum.

Q: How good is this algorithm?
A: Depends on k! Can show that the running time is

(nk). If k=1, asymptotically optimal.
Also true for any constant k.

If k = log n, running time is (n log n). Is this good?
If k = n/2 (MEDIAN), running time is (n2).

Definitely bad! Can sort in O(n log n)!

Q: Is there a better algorithm? YES!

A Harder Problem

Think for a minute

5/7/2013 CSE 3101 Lecture 1 39

INPUT: n distinct integers such that n = 2m-1, each integer k
satisfies 0 k  2m-1.

OUTPUT: a number j, 0  j  2m-1, such that j is not contained
in the input.

Brute Force 1: Sort the numbers.
Analysis: (n log n) time, (n log n) space.

Brute Force 2: Use a table of size n, “tick off” each
number as it is read.
Analysis:  (n) time,  (n) space.

Q: Can the running time be improved? No (why?)
Q: Can the space complexity be improved? YES!

Space complexity

Think for a minute

5/7/2013 CSE 3101 Lecture 1 40

INPUT: n distinct integers such that n = 2m-1, each integer k
satisfies 0 k  2m-1.

OUTPUT: a number j, 0  j  2m-1, such that j is not contained
in the input.

Observation:

000 Keep a running bitwise sum (XOR) of the
001 inputs. The final sum is the integer
010 missing.
011
100 Q: How do we prove this?
101
110

+ 111

000

Space complexity – contd.

5/7/2013 CSE 3101 Lecture 1 41

1. Is it similar/identical/equivalent to an existing problem?
2. Has the problem been solved?
3. If a solution exists, is the solution the best possible?

May be a hard question :
Can answer NO by presenting a better algorithm.
To answer YES need to prove that NO algorithm can
do better!
How do you reason about all possible algorithms?
(there is an infinite set of correct algorithms)

4. If no solution exists, and it seems hard to design an
efficient algorithm, is it intractable?

Aside: When you see a new problem, ask…

5/7/2013 CSE 3101 Lecture 1 42

“We maintain a subset of elements sorted within a list.
The remaining elements are off to the side somewhere.
Initially, think of the first element in the array as a
sorted list of length one. One at a time, we take one of
the elements that is off to the side and we insert it into
the sorted list where it belongs. This gives a sorted list
that is one element longer than it was before. When the
last element has been inserted, the array is completely
sorted.”

English descriptions:

- Easy, intuitive.
- Often imprecise, may leave out critical details.

Analysis example: Insertion sort

5/7/2013 CSE 3101 Lecture 1 43

Insertion sort: pseudocode

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key
do A[i+1]=A[i]

i--
A[i+1]:=key

Can you understand
The algorithm?
I would not know
this is insertion sort!

Moral: document code!

We will prove this algorithm correct when we study writing
correctness proofs

5/7/2013 CSE 3101 Lecture 1 44

Analysis of Insertion Sort

for j2 to n
do keyA[j]

Insert A[j] into the sorted
sequence A[1..j-1]

ij-1
while i>0 and A[i]>key

do A[i+1]A[i]
i  i-1

A[i+1]  key

cost
c1
c2
0

c3
c4
c5
c6
c7

times
n
n-1
n-1

n-1

n-1

2

n
jj

t


2
(1)n

jj
t




2
(1)n

jj
t




Let’s compute the running time as a function of the
input size

5/7/2013 CSE 3101 Lecture 1 45

Analysis of Insertion Sort – contd.

• Best case: elements already sorted  tj=1, running
time = (n), i.e., linear time.

• Worst case: elements are sorted in inverse order
 tj=j, running time = (n2), i.e., quadratic time

• Average case: tj=j/2, running time = (n2), i.e.,
quadratic time

• We can see that insertion sort has a worst case
running time An2 + Bn + C, where A = (c5+c6+c7)/2
etc.

• Q1: How useful are the details in this result?
• Q2: How can we simplify the expression?

5/7/2013 CSE 3101 Lecture 1 46

Back to asymptotics……

We will now look more formally at the process
of simplifying running times and other
measures of complexity.

5/7/2013 CSE 3101 Lecture 1 47

Asymptotic analysis

• Goal: to simplify analysis of running time by getting
rid of ”details”, which may be affected by specific
implementation and hardware

– like “rounding”: 1,000,001  1,000,000
– 3n2  n2

• Capturing the essence: how the running time of an
algorithm increases with the size of the input in the
limit.
– Asymptotically more efficient algorithms are best

for all but small inputs

5/7/2013 CSE 3101 Lecture 1 48

Asymptotic notation

• The “big-Oh” O-Notation
– asymptotic upper bound
– f(n)  O(g(n)), if there exists

constants c and n0, s.t. f(n) 
c g(n) for n  n0

– f(n) and g(n) are functions over
non-negative integers

• Used for worst-case analysis

)(nf
()c g n

0n Input Size

R
un

ni
ng

 T
im

e

5/7/2013 CSE 3101 Lecture 1 49

• The “big-Omega” Notation
– asymptotic lower bound
– f(n)  (g(n)) if there exists

constants c and n0, s.t. c g(n) 
f(n) for n  n0

• Used to describe best-case
running times or lower
bounds of algorithmic
problems
– E.g., lower-bound of searching

in an unsorted array is (n).

Input Size

R
un

ni
ng

 T
im

e)(nf
()c g n

0n

Asymptotic notation – contd.

5/7/2013 CSE 3101 Lecture 1 50

Asymptotic notation – contd.

• Simple Rule: Drop lower order terms and
constant factors.
– 50 n log n  O(n log n)
– 7n - 3  O(n)
– 8n2 log n + 5n2 + n  O(n2 log n)

• Note: Even though 50 n log n  O(n5), we
usually try to express a O() expression using
as small an order as possible

5/7/2013 CSE 3101 Lecture 1 51

• The “big-Theta” Notation
– asymptoticly tight bound
– f(n)  (g(n)) if there exists

constants c1, c2, and n0, s.t. c1
g(n)  f(n)  c2 g(n) for n  n0

• f(n)  (g(n)) if and only if f(n)
 (g(n)) and f(n)  (g(n))

• O(f(n)) is often misused
instead of (f(n))

Input Size

R
un

ni
ng

 T
im

e)(nf

0n

Asymptotic notation – contd.

)(ngc 2

)(ngc 1

5/7/2013 CSE 3101 Lecture 1 52

Asymptotic notation – contd.

• Two more asymptotic notations
– "Little-Oh" notation f(n)=o(g(n))

non-tight analogue of Big-Oh
• For every c, there should exist n0 , s.t. f(n)  c g(n)

for n  n0

• Used for comparisons of running times.
If f(n)  o(g(n)), it is said that g(n) dominates f(n).

• More useful defn:

– "Little-omega" notation f(n)  (g(n))
non-tight analogue of Big-Omega

f(n)
lim ----- = 0
n g(n)

5/7/2013 CSE 3101 Lecture 1 53

Asymptotic notation – contd.

• (VERY CRUDE) Analogy with real numbers
– f(n) = O(g(n))  f  g
– f(n) = (g(n))  f  g
– f(n) = (g(n))  f g
– f(n) = o(g(n))  f g
– f(n) = (g(n))  f g

• Abuse of notation: f(n) = O(g(n)) actually
means f(n)  O(g(n)).

5/7/2013 CSE 3101 Lecture 1 54

Points to ponder and lessons

Common “colloquial” uses:
(1) – constant.
n(1) – polynomial
2(n) – exponential

• When is asymptotic analysis useful?
• When is it NOT useful?

Many, many abuses of asymptotic notation in Computer
Science literature.

Lesson: Always remember the implicit assumptions…

Be careful!
n(1) (n1)

2(n)(2n)

5/7/2013 CSE 3101 Lecture 1 55

Comparison of Running Times

Running
Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31

5/7/2013 CSE 3101 Lecture 1 56

Classifying functions

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n

5/7/2013 CSE 3101 Lecture 1 57

Hierarchy of functions

Functions

Poly Logarithm
ic

Polynom
ial

Exponential

Exp

D
ouble Exp

C
onstant

(log n)5 n5 25n5 2 n5 25n

2

O
thers

2n log(n)

5/7/2013 CSE 3101 Lecture 1 58

Classifying Polynomials

Polynomial

Linear

Q
uadratic

C
ubic

?

5n25n 5n3 5n4

O
thers

5n3 log7(n)

Dominant term is of the form nc

5/7/2013 CSE 3101 Lecture 1 59

Logarithmic functions

• log10n = # digits to write n
• log2n = # bits to write n

= 3.32 log10n
• log(n1000) = 1000 log(n)

Differ only by a
multiplicative
constant.

(log n)5 = log5 n

Poly Logarithmic (a.k.a. polylog)

5/7/2013 CSE 3101 Lecture 1 60

Crucial asymptotic facts

Logarithmic << Polynomial
log1000 n << n0.001 For sufficiently large n

Linear << Quadratic
10000 n << 0.0001 n2 For sufficiently large n

Polynomial << Exponential
n1000 << 20.001 n For sufficiently large n

5/7/2013 CSE 3101 Lecture 1 61

Are constant functions constant?

• 5
• 1,000,000,000,000
• 0.0000000000001
• -5
• 0
• 8 + sin(n)

Yes
Yes
Yes
No
No
Yes Lie in between

7
9

The running time of the algorithm is a “constant”
It does not depend significantly

on the size of the input.
Write θ(1).

5/7/2013 CSE 3101 Lecture 1 62

Polynomial Functions

Quadratic
• n2

• 0.001 n2

• 1000 n2

• 5n2 + 3000n + 2log n

Polynomial
•nc

• n0.0001

• n10000

• 5n2 + 8n + 2log n
• 5n2 log n
• 5n2.5

Lie in between

Lie in between

5/7/2013 CSE 3101 Lecture 1 63

Exponential functions

• 2n

• 20.0001 n

• 210000 n

• 8n

• 2n / n100

•2n · n100

= 23n

> 20.5n

< 22n

20.5n > n100

2n = 20.5n · 20.5n > n100 · 20.5n

2n / n100 > 20.5n

5/7/2013 CSE 3101 Lecture 1 64

Proving asymptotic expressions

Use definitions!
e.g. f(n) = 3n2 + 7n + 8 = θ(n2)
f(n)  (g(n)) if there exists constants c1, c2, and n0, s.t.
c1 g(n)  f(n)  c2 g(n) for n  n0

Here g(n) = n2

One direction (f(n) = (g(n)) is easy
c1 g(n)  f(n) holds for c1 = 3 and n  0

The other direction (f(n) = (g(n)) needs more care
f(n)  c2 g(n) holds for c2 = 18 and n  1 (CHECK!)

So n0 = 1

5/7/2013 CSE 3101 Lecture 1 65

Proving asymptotic expressions – contd.

Caveats!
1. constants c1, c2 MUST BE POSITIVE .
2. Could have chosen c2 = 3 +  for any . WHY?
-- because 7n + 8  n2 for n  n0 for some sufficiently
large n0. Usually, the smaller the  you choose, the
harder it is to find n0. So choosing a large  is easier

3. Order of quantifiers
c1 c2 n0  n  n0, c1g(n)  f(n)  c2g(n)
vs
n0  n  n0 c1 c2, c1g(n)  f(n)  c2g(n)
-- allows a different c1 and c2 for each n. Can choose
c2 = 1/n!! So we can “prove” n3 =  (n2).

5/7/2013 CSE 3101 Lecture 1 66

Why polynomial vs exponential?

Philosophical/Mathematical reason – polynomials have
different properties, grow much slower; mathematically
natural distinction.

Practical reasons
1. almost every algorithm ever designed and every
algorithm considered practical are very low degree
polynomials with reasonable constants.
2. a large class of natural, practical problems seem to
allow only exponential time algorithms. Most experts
believe that there do not exist any polynomial time
algorithms for any of these; i.e. P  NP.

