CSE 3101: DESIGN AND ANALYSIS OF ALGORITHMS – Assignment 1 Weight: 2%, Due: May 14, in the drop box by 6:45 pm or in class by 7:10 pm

1 Solved Problems

1. Prove that $(n+1)^3 \in \Theta(n^3)$. Solution: Since

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$

 $\leq n^3 + 3n^3 + 3n^3 + n^3$
 $= 8n^3 \text{ for } n > 0$

it follows that $(n + 1)^3 \in O(n^3)$. Similarly since $(n + 1)^3 > n^3$ for n > 0, it follows that $(n + 1)^3 \in \Omega(n^3)$. Therefore $(n + 1)^3 \in \Theta(n^3)$.

2. Find the relationship between $f(n) = n2^n$ and $g(n) = 3^n$ in terms of $O(), \Theta(), o(), \Omega(), \omega()$ and prove your answer.

Solution: We will prove that f(n) = o(g(n)). As usual, the limit definition is the easiest to use.

Since

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n}{1.5^n}$$
$$= \lim_{n \to \infty} \frac{1}{1.5^n \log_e 1.5}$$
$$= 0$$

the result follows.

2 Problems to submit

- 1. Prove that $3n^2 + \sqrt{n} \in \Theta(n^2)$.
- 2. What is the value returned by the following function? Express your answer as a function of n. Give using O() notation the worst-case running time.

EVAL1(n)
1
$$v \leftarrow 0$$

2 for $i \leftarrow 1$ to n
3 do for $j \leftarrow i+1$ to $i+n$
4 do $v \leftarrow v+1$
5 return v