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CSE 2001: 
Introduction to Theory of Computation 

Summer 2013 

Week 9: Turing Machines and the 
Church-Turing Thesis 

 
Yves Lespérance 

 

Course page: http://www.cse.yorku.ca/course/2001 
 

Slides are mostly taken from Suprakash Datta’s for Winter 2013 
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Next 
• Computability (Ch 3) 

•  Turing machines 

•  TM-computable/recognizable languages 

•  Variants of TMs 
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Turing Machines   
After Alan M. Turing (1912–1954) 

In 1936, Turing introduced his 
abstract model for computation in 
his article “On Computable Numbers, with an  
application to the Entscheidungsproblem”. 

At the same time, Alonzo Church published  
similar ideas and results. 
However, the Turing model has become the 
standard model in theoretical computer science. 
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Informal Description TM 

Depending on its state and the letter xi, the TM  
- writes down a letter,  
- moves its read/write head left or right, and  
- jumps to a new state. 

internal  
state set Q 

R L 

__1#0_1101 At every step,  
the head of the  
TM M reads a  
letter xi from the  
one-way infinite  
tape.  
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Input Convention 

state q0 

 ___www n21

Initially, the tape contains the input 
w∈Σ*, padded with blanks “_”, 
and the TM is in start state q0. 

During the computation, the head moves left 
and right (but not beyond the leftmost point), 
the internal state of the machine changes, 
and the content of the tape is rewritten. 
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Output Convention 

The computation can proceed indefinitely, or the  
machines reaches one of the two halting states: 

state qaccept 

 _vvv m21

state qreject 

 _vvv m21

or 
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Major differences with FA, PDA 
•  Input can be read more than once 
•  Scratch memory available, can be 

accessed without restrictions 
•  The “running time” is not predictable 

from the input – the machine can 
“churn” for a long time even on a short 
input 

•  So we need a clear indicator of end of 
computation 
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Turing Machine (Def. 3.3) 
A Turing machine M is defined by a 
7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), with 
•  Q finite set of states 
•  Σ finite input alphabet (without “_”) 
•  Γ finite tape alphabet with { _ } ∪ Σ ⊆ Γ  
•  q0 start state ∈ Q 
•  qaccept accept state ∈ Q 
•  qreject reject state ∈ Q 
•  δ the transition function 
       δ: Q × Γ → Q × Γ × {L,R} 

Why do you  
need these? 
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Configuration of a TM 
The configuration of a Turing machine consists of 
•  the current state q∈ Q 
•  the current tape contents ∈ Γ* 
•  the current head location ∈ {0,1,2,…} 
 
This can be expressed as an element of Γ*×Q×Γ*: 

__1#0_1101

q9 
becomes “101 q9 1_0#1” 
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An Elementary TM Step 
Let u,v∈ Γ* ; a,b,c∈ Γ ; qi,qj∈Q, and M a TM 
with transition function δ. 
We say that the configuration “ua qi bv” yields the 
configuration “uac qj v” if and only if: 
 δ(qi,b) = (qj,c,R). 
 
Similarly, “ua qi bv” yields “u qj acv” if and only if 
 δ(qi,b) = (qj,c,L). 
 
Also special cases for when head is at either end 
of the configuration; see Sipser for details. 
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Terminology 

starting configuration on input w: “q0w” 
 
accepting configuration: “uqacceptv” 
 
rejecting configuration: “uqrejectv” 
 
The accepting and rejecting configurations are 
the halting configurations. 
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Accepting TMs 
A Turing machine M accepts input w∈Σ* 
if and only if there is a finite sequence of  
configurations C1,C2,…,Ck with 
 
•  C1 the starting configuration “q0w” 
•  for all i=1,…,k–1 Ci yields Ci+1 (following M’s 
δ) 
•  Ck is an accepting configuration “uqacceptv” 

The language that consists of all inputs that are  
accepted by M is denoted by L(M). 
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Turing Recognizable (Def. 3.5) 
A language L is Turing-recognizable if and only 
if there is a TM M such that L=L(M). 

Note: On an input w∉L, the machine M can 
halt in a rejecting state, or it can ‘loop’ 
indefinitely. 
How do you distinguish between a very long 
computation and one that will never halt? 

Also called: a recursively enumerable language. 
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Turing Decidable (Def. 3.6) 

Also called: a recursive language. 

A language L=L(M) is decided by the TM M if on  
every w, the TM finishes in a halting configuration. 
(That is: qaccept for w∈L and qreject for all w∉L.) 

A language L is Turing-decidable if and only 
if there is a TM M that decides L. 



8 

13-07-27 CSE 2001, Summer 2013 15 

Example 3.7: A = { 0j | j=2n } 
Approach: If j=0 then “reject”; If j=1 then “accept”;  
if j is even then divide by two; if j is odd and >1  
then “reject”.  Repeat if necessary. 

1.  Sweep left to right crossing off every other zero.  
1.  If the tape has a single 0, accept.  
2.  Else If there are an odd number of zeros 

reject. 
2.  Return the head to the left-hand end of the tape. 
3.  goto 1 
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State diagrams of TMs 
Like with PDA, we can represent Turing machines 
by (elaborate) diagrams. 
 
See Figures 3.8 and 3.10 for two examples. 
 
If transition rule says: δ(qi,b) = (qj,c,R),  
then: 

qi qj 
b → c,R 
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When Describing TMs 
It is assumed that you are familiar with TMs and 
with programming computers. 

Clarity above all: high level description of TMs  
is allowed but should not be used as a trick to 
hide the important details of the program. 

Standard tools: Expanding the alphabet with 
separator “#”, and underlined symbols 0, a, 
to indicate ‘activity’.  Typical: Γ = { 0,1,#,_,0,1 } 
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Some more examples 
•  B={w#w| w ∈ (0,1)* }  (Pg 172) 

•  C = {ai bj ck | i*j=k, i,j,k >= 1} (Pg 174) 
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Turing machine variants 
•  Multiple tapes 
•  2-way infinite tapes 
•  Non-deterministic TMs 
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Multitape Turing Machines 

A k-tape Turing machine M has k different 
tapes and read/write heads.  It is thus defined  
by the 7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), with 
•  Q finite set of states 
•  Σ finite input alphabet (without “_”) 
•  Γ finite tape alphabet with { _ } ∪ Σ ⊆ Γ  
•  q0 start state ∈ Q 
•  qaccept accept state ∈ Q 
•  qreject reject state ∈ Q 
•  δ the transition function 
    δ: Q\{qaccept,qreject} × Γk → Q × Γk × {L,R}k 
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k-tape TMs versus 1-tape TMs 
Theorem 3.13: For every multi-tape TM M, there 
is a single-tape TM M’ such that L(M)=L(M’). 
Or, for every multi-tape TM M, there is an  
equivalent single-tape TM M’. 

Proving and understanding these kinds of robustness  
results, is essential for appreciating the power of the  
Turing machine model. 

From this theorem Corollary 3.15 follows: 
A language L is TM-recognizable if and only if  
some multi-tape TM recognizes L. 
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Outline Proof Thm. 3.13 

Let M=(Q,Σ,Γ,δ,q0,qaccept,qreject) be a k-tape TM. 
Construct 1-tape M’ with expanded Γ’ = Γ∪ Γ∪{#} 
 
Represent M-configuration  
                u1qja1v1,    u2qja2v2,   …,     ukqjakvk 
by M’ configuration, 

                      qj # u1a1v1 # u2a2v2 # … # ukakvk 
 
(The tapes are separated by #, the head  
positions are marked by underlined letters.) 
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Proof Thm. 3.13 (cont.) 

On input w=w1…wn, the TM M’ does the following: 
•  Prepare initial string: #w1…wn#_##_#_  
•  Read the underlined input letters ∈ Γk 

•  Simulate M by updating the input and the 
underlining of the head-positions. 

•  Repeat 2-3 until M has reached a halting state 
•  Halt accordingly. 

PS: If the update requires overwriting a # symbol, 
then shift the part # _ one position to the right. 
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Non-deterministic TMs 
A nondeterministic Turing machine M can have  
several options at every step.  It is defined by  
the 7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), with 
•  Q finite set of states 
•  Σ finite input alphabet (without “_”) 
•  Γ finite tape alphabet with { _ } ∪ Σ ⊆ Γ  
•  q0 start state ∈ Q 
•  qaccept accept state ∈ Q 
•  qreject reject state ∈ Q 
•  δ the transition function 
    δ: Q\{qaccept,qreject} × Γ → P (Q × Γ × {L,R}) 
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Robustness 
Just like k-tape TMs, nondeterministic Turing  
machines are not more powerful than simple TMs: 

Every nondeterministic TM has an equivalent  
3-tape Turing machine, which –in turn– has an 
equivalent 1-tape Turing machine. 

Hence: “A language L is recognizable if and only  
if some nondeterministic TM recognizes it.” 

The Turing machine model is extremely robust. 
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Computing with non-deterministic 
TMs 

C1 

C6 
C5 

C4 C3 
C2 

Evolution of the n.d. TM 
represented by a tree  
of configurations (rather 
than a single path). 

 “reject” 

“accept” 

If there is (at least) 
one accepting leave, 
then the TM accepts. 

t=1 

t=2 

t=3 
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Simulating Non-deterministic 
TMs with Deterministic Ones 

We want to search every path down the tree 
for accepting configurations. 

Bad idea: “depth first”. This approach can get 
lost in never-halting paths. 

Good idea: “breadth first”. For time step 1,2,…  
we list all possible configurations of the non- 
deterministic TM.  The simulating TM accepts  
when it lists an accepting configuration.  
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Breadth First 

Let b be the maximum number 
of children of a node. 

C1 

C6 
C5 

C4 C3 
C2 

 “reject” 

“accept” 

t=1 

t=2 

t=3 
Any node in the tree can 
be uniquely identified  by 
a string ∈ {1,…,b}*. 

Example: location of the 
rejecting configuration is (3,1). 

With the lexicographical listing ε, (1), (2),…, (b), (1,1), 
(1,2),…,(1,b), (2,1),… et cetera, we cover all nodes.  
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Proof of Theorem 3.16 
Let M be the non-deterministic TM on input w. 

The simulating TM uses three tapes: 
T1 contains the input w 
T2 the tape content of M on w at a node 
T3 describes a node in the tree of M on w. 

1)  T1 contains w, T2 and T3 are empty 
2)  Simulate M on w via the deterministic path  

to the node of tape 3. If the node accepts, 
“accept”, otherwise go to 3) 

3)  Increase the node value on T3; go to 2) 
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Robustness 
Just like k-tape TMs, nondeterministic Turing  
machines are not more powerful than simple TMs: 

Every nondeterministic TM has an equivalent  
3-tape Turing machine, which –in turn– has an 
equivalent 1-tape Turing machine. 

Hence: “A language L is recognizable if and only  
if some nondeterministic TM recognizes it.” 

Let’s consider other ways of computing a language… 
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Enumerating Languages 
Thus far, the Turing machines were ‘recognizers’. 
 
When a TM E generates the words of a language, 
E is an enumerator (cf. “recursively enumerable”). 

A Turing machine E, enumerates the language L 
if it prints an (infinite) list of strings on the tape 
such that all elements of L will appear on the tape, 
and all strings on the tape are elements of L. 
(E starts on an empty input tape.  The strings  
can appear in any order; repetition is allowed.) 
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Enumerating = Recognizing 
Theorem 3.21: A language L is TM-recognizable 
if and only if L is enumerable.  

Proof: (“if”) Take the enumerator E and input w. 
Run E and check the strings it generates. 
If w is produced, then “accept” and stop, 
otherwise let E continue. 
(“only if”) Take the recognizer M. Let s1,s2,… 
be a listing of all strings ∈Σ*⊆L.  
For j=1,2,… run M on s1,…,sj for j time-steps.  
If M accepts an s, print s.  Keep increasing j. 
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Other Computational Models 

We can consider many other ‘reasonable’  
models of computation: DNA computing, 
neural networks, quantum computing…  
 
Experience teaches us that every such model  
can be simulated by a Turing machine. 
 
Church-Turing Thesis: 
The intuitive notion of computing and algorithms 
is captured by the Turing machine model. 
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Importance of the  
Church-Turing Thesis 

The Church-Turing thesis marks the end of  
a long sequence of developments that concern 
the notions of “way-of-calculating”, “procedure”,  
“solving”, “algorithm”. 

For a long time, this was an implicit notion 
that defied proper analysis.  

Goes back to Euclid’s GCD algorithm (300 BC). 
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“Algorithm” 

After Abū ‘Abd Allāh Muhammed  
ibn Mūsā al-Khwārizmī (770 – 840) 
 
His “Al-Khwarizmi on the Hindu Art of  
Reckoning” describes the decimal system 
(with zero), and gives methods for calculating  
square roots and other expressions. 

“Algebra” is named after an earlier book. 
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Hilbert’s 10th Problem 

In 1900, David Hilbert (1862–1943) proposed 
his Mathematical Problems (23 of them). 
 
The Hilbert’s 10th problem is: Determination 
of the solvability of a Diophantine equation. 
Given a Diophantine equation with any number of 
unknown quantities and with integer coefficients: To 
devise a process according to which it can be 
determined by a finite number of operations whether 
the equation is solvable in integers. 
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Diophantine Equations 

Let P(x1,…,xk) be a polynomial in k variables 
with integral coefficients.  Does P have an  
integral root (x1,…,xk)∈Zk ? 

Example: P(x,y,z) = 6x3yz + 3xy2–x3–10  
has integral root (x,y,z) = (5,3,0). 

Other example: P(x,y) = 21x2–81xy+1  
does not have an integral root. 
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(Un)solving Hilbert’s 10th 
Hilbert’s “…a process according to which it can  
be determined by a finite number of operations…” 
needed to be defined in a proper way. 

This was done in 1936 by Church and Turing. 

The impossibility of such a process for  
exponential equations was shown by Davis,  
Putnam and Robinson. 

Matijasevič proved that Hilbert’s 10th problem  
is unsolvable in 1970. 
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Describing TM Programs 
Three Levels of Describing algorithms: 
•  formal (state diagrams, CFGs, et cetera) 
•  implementation (pseudo-code) 
•  high-level (coherent and clear English) 

Describing input/output format: 
TM’s allow only strings ∈Σ* as input/output. 
If our X and Y are of another form (graph, Turing 
machine, polynomial), then we use <X,Y> to  
denote ‘some kind of encoding ∈Σ*’. 


