Recall: Regular Languages

The language recognized by a finite automaton \(M \) is denoted by \(L(M) \).

A regular language is a language for which there exists a recognizing finite automaton.
Terminology: closure

- A set is defined to be closed under an operation if that operation on members of the set always produces a member of the same set. *(adapted from wikipedia)*

E.g.:
- The integers are closed under addition, multiplication.
- The integers are not closed under division
- Σ^* is closed under concatenation

- A set can be defined by closure -- Σ^* is called the (Kleene) closure of Σ under concatenation.

Terminology: Regular Operations

Pages 44-47 (Sipser)

The regular operations are:

1. Union
2. Concatenation
3. Star (Kleene Closure): For a language A,
 $A^* = \{w_1w_2w_3\ldots w_k | k \geq 0, \text{ and each } w_i \in A\}$
Closure Properties

• Set of regular languages is closed under
 -- Complementation
 – Union
 – Concatenation
 – Star (Kleene Closure)

Complement of a regular language

• Swap the accepting and non-accept states of M to get M’.

• The complement of a regular language is regular.
Other closure properties

Union: Can be done with DFA, but using a complicated construction.

Concatenation: We tried and failed

Star: ???

We introduced non-determinism in FA

Recall: NFA drawing conventions

• Not all transitions are labeled
• Unlabeled transitions are assumed to go to a reject state from which the automaton cannot escape
Closure under regular operations

Union (new proof):

![Diagram of constructing an NFA to recognize \(A_1 \cup A_2 \)]

Figure 1.46
Construction of an NFA \(N \) to recognize \(A_1 \cup A_2 \)

Closure under regular operations

Concatenation:

![Diagram of constructing an NFA to recognize \(A_1 \circ A_2 \)]

Figure 1.48
Construction of \(N \) to recognize \(A_1 \circ A_2 \)
Closure under regular operations

Star:

\[L_1 = \{w \mid w= a^n, n \in \mathbb{N}\} \]
\[L_2 = \{w \mid w = b^n, n \in \mathbb{N}\} \]

are regular, therefore
\[L_1 \cdot L_2 = \{w \mid w=a^n b^n, n \in \mathbb{N}\} \]
is regular

Incorrect reasoning about RL

- Since \(L_1 = \{w \mid w= a^n, n \in \mathbb{N}\} \)
 \(L_2 = \{w \mid w = b^n, n \in \mathbb{N}\} \) are regular,
 therefore \(L_1 \cdot L_2 = \{w \mid w=a^n b^n, n \in \mathbb{N}\} \) is regular
- If \(L_1 \) is a regular language, then
 \(L_2 = \{w^R \mid w \in L_1\} \) is regular, and
 Therefore \(L_1 \cdot L_2 = \{w w^R \mid w \in L_1\} \) is regular
Are NFA more powerful than DFA?

- NFA can solve every problem that DFA can (DFA are also NFA)
- Can DFA solve every problem that NFA can?

Equivalence of NFA, DFA

- Pages 54-58 (Sipser, 2nd ed)
- We will prove that every NFA is equivalent to a DFA (with upto exponentially more states).
- Non-determinism does not help FA’s to recognize more languages!
Epsilon Closure

• Let $N = (Q, \Sigma, \delta, q_0, F)$ be any NFA
• Consider any set $R \subseteq Q$
• $E(R) = \{q | q$ can be reached from a state in R by following 0 or more ϵ-transitions\}$
• $E(R)$ is the epsilon closure of R under ϵ-transitions

Proving equivalence

For all languages $L \subseteq \Sigma^*$

$L = L(N) \iff L = L(M)$
for some NFA N for some DFA M

One direction is easy:

A DFA M is also a NFA N. So N does not have to be ‘constructed’ from M
Proving equivalence – contd.

The other direction:
Construct M from N

- \(N = (Q, \Sigma, \delta, q_0, F) \)
- Construct \(M = (Q', \Sigma, \delta', q'_0, F') \) such that,
 - for any string \(w \in \Sigma^* \),
 - \(w \) is accepted by \(N \) iff \(w \) is accepted by \(M \)

Special case

- Assume that \(\epsilon \) is not used in the NFA \(N \).
 - Need to keep track of each subset of \(N \)
 - So \(Q' = P(Q) \), \(q'_0 = \{q_0\} \)
 - \(\delta'(R,a) = \bigcup(\delta(r,a)) \) over all \(r \in R \), \(R \in Q' \)
 - \(F' = \{R \in Q' | R \text{ contains an accept state of } N\} \)

- Now let us assume that \(\epsilon \) is used.
Construction (general case)

1. \(Q' = \mathcal{P}(Q) \)
2. \(q'_0 = E(\{q_0\}) \)
3. for all \(R \in Q' \) and \(a \in \Sigma \)
 \(\delta'(R, a) = \{ q \in Q | q \in E(\delta(r, a)) \text{ for some } r \in R \} \)
4. \(F' = \{ R \in Q' | R \text{ contains an accept state of } N \} \)

Why the construction works

- for any string \(w \in \Sigma^* \),
- \(w \) is accepted by \(N \) iff \(w \) is accepted by \(M \)
- Can prove using induction on the number of steps of computation…
State minimization

It may be possible to design DFA’s without the exponential blowup in the number of states. Consider the NFA and DFA below.

Characterizing FA languages

- Regular expressions
Regular Expressions (Def. 1.52)

Given an alphabet \(\Sigma \), R is a regular expression if:

(INDUCTIVE DEFINITION)

- \(R = a \), with \(a \in \Sigma \)
- \(R = \varepsilon \)
- \(R = \emptyset \)
- \(R = (R_1 \cup R_2) \), with \(R_1 \) and \(R_2 \) regular expressions
- \(R = (R_1 \cdot R_2) \), with \(R_1 \) and \(R_2 \) regular expressions
- \(R = (R_1^*) \), with \(R_1 \) a regular expression

Precedence order: \(*, \cdot, \cup \)

Regular Expressions

- Unix ‘grep’ command: Global Regular Expression and Print
- Lexical Analyzer Generators (part of compilers)
- Both use regular expression to DFA conversion
Examples

- $e_1 = a \cup b$, $L(e_1) = \{a, b\}$
- $e_2 = ab \cup ba$, $L(e_2) = \{ab, ba\}$
- $e_3 = a^*$, $L(e_3) = \{a\}^*$
- $e_4 = (a \cup b)^*$, $L(e_4) = \{a, b\}^*$
- $e_5 = (e_m \cdot e_n)$, $L(e_5) = L(e_m) \cdot L(e_n)$
- $e_6 = a^*b \cup a^*bb$, $L(e_6) = \{w| w \in \{a, b\}^* and w has 0 or more a’s followed by 1 or 2 b’s\}$

Characterizing Regular Expressions

We prove that languages described by Regular expressions (RE) and Regular Languages are the same set, i.e.,

$\text{RE} = \text{RL}$
Thm 1.54: RL ~ RE

We need to prove both ways:

• If a language is described by a regular expression, then it is regular (Lemma 1.55)
 (We will show we can convert a regular expression R into an NFA M such that L(R)=L(M))

• The second part:
 If a language is regular, then it can be described by a regular expression (Lemma 1.60)

Regular expression to NFA

Claim: If L = L(e) for some RE e, then L = L(M) for some NFA M

Construction: Use inductive definition
1. \(R = a, \) with \(a \in \Sigma \)
2. \(R = \varepsilon \)
3. \(R = \emptyset \)
4. \(R = (R_1 \cup R_2), \) with \(R_1 \) and \(R_2 \) regular expressions
5. \(R = (R_1 \cdot R_2), \) with \(R_1 \) and \(R_2 \) regular expressions
6. \(R = (R_1^*), \) with \(R_1 \) a regular expression

4, 5, 6: similar to closure of RL under regular operations.
Examples of RE to NFA conv.

L = \{ab,ba\}
L = \{ab,abab,ababab,\ldots\}
L = \{w \mid w = a^m b^n, m<10, n>10\}

Back to RL ~ RE

• The second part (Lemma 1.60):
 If a language is regular, then it can be described by a regular expression.
• Proof strategy:
 - regular implies equivalent DFA.
 - convert DFA to GNFA (generalized NFA)
 - convert GNFA to NFA.

GNFA: NFA that have regular expressions as transition labels
Example GNFA

Generalized NFA - defn

Generalized non-deterministic finite automaton
M=(Q, Σ, δ, q_{start}, q_{accept}) with
• Q finite set of states
• Σ the input alphabet
• q_{start} the start state
• q_{accept} the (unique) accept state
• δ:(Q - {q_{accept}})×(Q - {q_{start}}) → R is the transition function
 (R is the set of regular expressions over Σ)

(NOTE THE NEWDEFN OF δ)
Characteristics of GNFA’s δ

• $\delta:(Q\{q_{\text{accept}}\}\times(Q\{q_{\text{start}}\}) \rightarrow R$

The interior $Q\{q_{\text{accept}},q_{\text{start}}\}$ is fully connected by δ
From q_{start} only ‘outgoing transitions’
To q_{accept} only ‘ingoing transitions’
Impossible $q_i \rightarrow q_j$ transitions are labeled “$\delta(q_i,q_j) = \emptyset$”

Observation: This GNFA recognizes the language $L(R)$

Proof Idea of Lemma 1.60

Proof idea (given a DFA M):
Construct an equivalent GNFA M' with $k \geq 2$ states
Reduce one-by-one the internal states until $k=2$
This GNFA will be of the form
This regular expression R will be such that $L(R) = L(M)$
DFA $M \rightarrow$ Equivalent GNFA M'

Let M have k states $Q=\{q_1, \ldots, q_k\}$ with start state q_1.

- Add two states q_{accept} and q_{start}.
- Connect q_{start} to original q_1.
- Connect old accepting states to q_{accept}.
- Complete missing transitions by.
- Join multiple transitions:

Remove Internal state of GNFA

If the GNFA M has more than 2 states, ‘rip’ internal q_{rip} to get equivalent GNFA M' by:

- Removing state q_{rip}: $Q'=Q\{q_{\text{rip}}\}$
- Changing the transition function δ by

$$\delta'(q_i,q_j) = \delta(q_i,q_j) \cup (\delta(q_i,q_{\text{rip}})(\delta(q_{\text{rip}},q_{\text{rip}}))^{*}\delta(q_{\text{rip}},q_j))$$

for every $q_i\in Q'\{q_{\text{accept}}\}$ and $q_j\in Q'\{q_{\text{start}}\}$.

Proof Lemma 1.60

Let M be DFA with k states
Create equivalent GNFA M’ with k+2 states
Reduce in k steps M’ to M’’ with 2 states
The resulting GNFA describes a single regular expression R
The regular language L(M) equals the language L(R) of the regular expression R

Proof Lemma 1.60 - continued

• Use induction (on number of states of GNFA) to prove correctness of the conversion procedure.
• Base case: k=2.
• Inductive step: 2 cases – q_{rip} is/is not on accepting path.
Recap RL = RE

Let R be a regular expression, then there exists an NFA M such that \(L(R) = L(M) \)

The language \(L(M) \) of a DFA M is equivalent to a language \(L(M') \) of a GNFA = \(M' \), which can be converted to a two-state \(M'' \)

The transition \(q_{\text{start}} \rightarrow R \rightarrow q_{\text{accept}} \) of \(M'' \)
obeys \(L(R) = L(M'') \)

Hence: \(\text{RE} \subseteq \text{NFA = DFA} \subseteq \text{GNFA} \subseteq \text{RE} \)

Example

\(L = \{ w | \text{the sum of the bits of } w \text{ is odd} \} \)