Implementing
Stacks and Queues

Based on slides by Prof. Burton Ma



Stack

 Examples of stacks

e b,




Top of Stack

* Top of the stack




Stack Operations

e Classically, stacks only support two operations

1. Push
e Add to the top of the stack

2. Pop

e Remove from the top of the stack



Stack Optional Operations

Optional operations

1.

2.

4.

5.

6.

Size

Number of elements in the stack
iISEmpty

Is the stack empty?
peek

Get the top element (without removing it)
search

Find the position of the element in the stack
isFull

Is the stack full? (for stacks with finite capacity)
capacity

Total number of elements the stack can hold (for stacks with

finite capacity)



Al S

st.push("A™)
st.push(''B")
st.push(''C'™)
st.push(''D™)
st.push("'E"™)

Push




Al S

Pop

String s = st.pop()

s = st.pop()
s = st.pop()
s = st.pop()

s = st.pop()




LIFO

e Stack is a Last-In-First-Out (LIFO) data
structure

— The last element pushed onto the stack is the first
element that can be accessed from the stack



Implementation with LinkedList

* Alinked list can be used to efficiently
implement a stack

 The head of the list becomes the top of the
stack

— Adding (push) and removing (pop) from the head
of a linked list requires O(1) time



public class Stack<E> {
private LinkedList<E> stack;

public Stack() {
this.stack = new LinkedList<E>();

}

public push(E element) {
this.stack.addFirst(element);

}

public E pop() {
return this.stack.removeFirst();

}
}



Implementation with ArrayList

« ArraylList can be used to efficiently
implement a stack

 The end of the list becomes the top of the
stack

— Adding and removing to the end of an

ArrayList usually can be performed in O(1)
time



public class Stack<E> {
private ArrayList<E> stack;

public Stack() {
this.stack = new ArrayList<E>();

}

public push(E element) {
this.stack.add(element);

}

public E pop() {
return this.stack.remove(this.stack.size() - 1);
}
}



Implementations in java.util

e java.util.Stack provides a stack class



Applications

e Stacks are used widely in computer science
and computer engineering

— A call stack is used to store information about the
active methods in a Java program

— Undo/Redo
— Back/Forward history
— Widely used in parsing



Queue

15



16



Queue Operations

e Classically, queues only support two
operations
1. Enqueue
e Add to the back of the queue
2. Dequeue

e Remove from the front of the queue



Queue Optional Operations

Optional operations

1.

2.

4.

5.

6.

Size

Number of elements in the queue
iISEmpty

Is the queue empty?
peek

Get the front element (without removing it)
search

Find the position of the element in the queue
isFull

Is the queue full? (for queues with finite capacity)
capacity

Total number of elements the queue can hold (for queues

with finite capacity)



A A

O O O o 0O

Enqueue

-.enqueue('A')
-.enqueue(''B')
-.enqueue('C'")
-.enqueue(''D'")

-.enqueue("'E")

TR
L'}

19



Dequeue

1. String s = qg.dequeue()

AEENE
o )

20



Dequeue

1. String s = q.dequeue()
2. s = g.dequeue()

EENE
o )

21



Dequeue

1. String s = q.dequeue()

2.
3.

S

S

gq.dequeue()
gq.dequeue()

aNE
* o

22



Dequeue

1. String s = q.dequeue()

2. s =
3. S =
4, s =

gq.dequeue()
gq.dequeue()
gq.dequeue()

|
T

23



Moo=

w

Dequeue

String s = g.-dequeue()
s = q.dequeue()
s = q-dequeue()
s = q.dequeue()
s = q.dequeue()

ot

24



FIFO

e Queue is a First-In-First-Out (FIFO) data
structure

— The first element enqueued in the queue is the
first element that can be accessed from the queue



Implementation with LinkedList

* Alinked list can be used to efficiently implement a

gueue as long as the linked list keeps a reference to the
last node in the list

— Required for enqueue

e The head of the list becomes the front of the queue

— Removing (dequeue) from the head of a linked list requires
O(1) time

— Adding (enqueue) to the end of a linked list requires O(1)
time if a reference to the last node is available

e java.util.LinkedList is a doubly linked list that holds a
reference to the last node



public class Queue<E> {
private LinkedList<E> q;

public Queue() {
this.q = new LinkedList<E>();

}

public enqueue(E element) {
this.g.addLast(element);

}

public E dequeue() {
return this.q.removeFirst();

}
}



Implementation with LinkedList

 Note that there is no need to implement your
own queue as there is an existing interface

— The interface does not use the names enqueue
and dequeue however



java.util.Queue

public iInterface Queue<E>
extends Collection<E>

boolean add(E e)

Inserts the specified element into this queue...
E remove()

Retrieves and removes the head of this queue...
E peek()

Retrieves, but does not remove, the head of this queue...

* Plus other methods
— http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html



http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

java.util.Queue
« LinkedList implements Queue so if you ever
need a queue you can simply use:

— E.g. for a queue of strings

Queue<String> g = new LinkedList<String>();



Queue applications

e Queues are useful whenever you need to hold
elements in their order of arrival

— Serving requests of a single resource
* Printer queue
e Disk queue
* CPU queue
 Web server



