
Mixing Static and Non-Static
Features

1

Based on slides by Prof. Burton Ma

static Attributes

An attribute that is static is a per-class
member
 Only one copy of the attribute, and the attribute is

associated with the class
 Every object created from a class declaring a static

attribute shares the same copy of the attribute

 Static attributes are used when you really want
only one common instance of the attribute for
the class

2

Example

A common textbook example of a static
attribute is a counter that counts the number
of created instances of your class

3

// adapted from Sun's Java Tutorial
public class Bicycle {
 // some attributes here...
 private static int numberOfBicycles = 0;

 public Bicycle() {
 // set some attributes here...
 Bicycle.numberOfBicycles++;
 }

 public static int getNumberOfBicyclesCreated() {
 return Bicycle.numberOfBicycles;
 }
}

note:
not this.numberOfBicycles++

[notes 3.2]

Another common example is to count the
number of times a method has been called

4

public class X {

 private static int numTimesXCalled = 0;
 private static int numTimesYCalled = 0;

 public void xMethod() {
 // do something... and then update counter
 ++X.numTimesXCalled;
 }

 public void yMethod() {
 // do something... and then update counter
 ++X.numTimesYCalled;
 }
}

Mixing Static and Non-static Attributes

A class can declare static (per class) and non-
static (per instance) attributes
A common textbook example is giving each

instance a unique serial number
 The serial number belongs to the instance
 Therefore it must be a non-static attribute

5

public class Bicycle {
 // some attributes here...
 private static int numberOfBicycles = 0;

 private int serialNumber;

 // ...

How do you assign each instance a unique
serial number?
 The instance cannot give itself a unique serial

number because it would need to know all the
currently used serial numbers

Could require that the client provide a serial
number using the constructor
 Instance has no guarantee that the client has

provided a valid (unique) serial number

6

The class can provide unique serial numbers
using static attributes
 E.g. using the number of instances created as a

serial number

7

public class Bicycle {
 // some attributes here...

 private static int numberOfBicycles = 0;
 private int serialNumber;

 public Bicycle() {
 // set some attributes here...
 this.serialNumber = Bicycle.numberOfBicycles;
 Bicycle.numberOfBicycles++;
 }
}

A more sophisticated implementation might
use an object to generate serial numbers

8

public class Bicycle {

 // some attributes here...
 private static int numberOfBicycles = 0;

 private static final
 SerialGenerator serialSource = new SerialGenerator();

 private int serialNumber;

 public Bicycle() {
 // set some attributes here...
 this.serialNumber = Bicycle.serialSource.getNext();
 Bicycle.numberOfBicycles++;
 }
}

Static Methods

 Recall that a static method is a per-class method
 Client does not need an object to invoke the method
 Client uses the class name to access the method

 A static method can only use static
attributes of the class
 static methods have no this parameter because a
static method can be invoked without an object

 Without a this parameter, there is no way to access
non-static attributes

Non-static methods can use all of the attributes of
a class (including static ones)

 9

10

public class Bicycle {
 // some attributes, constructors, methods here...

 public static int getNumberCreated()
 {
 return Bicycle.numberOfBicycles;
 }

 public int getSerialNumber()
 {
 return this.serialNumber;
 }

 public void setNewSerialNumber()
 {
 this.serialNumber = Bicycle.serialSource.getNext();
 }
}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

Singleton Pattern

A singleton is a class that is instantiated exactly
once
 Singleton is a well-known design pattern that

can be used when you need to:
1. Ensure that there is no more than one instance of

a class, and
2. Provide a global point of access to the instance
 Any client that imports the package containing the

singleton class can access the instance

11 [notes 3.4]

One and Only One

How do you enforce this?
 Need to prevent clients from creating instances of

the singleton class
 private constructors

 The singleton class should create the one instance
of itself
 Note that the singleton class is allowed to call its own
private constructors

 Need a static attribute to hold the instance

12

A Silly Example
public class Santa
{
 // whatever attributes you want for santa...

 private static final Santa INSTANCE = new Santa();

 private Santa()
 { // initialize attributes here... }

 …

}

13

Global Access

How do clients access the singleton instance?
 By using a static method

Note that clients only need to import the

package containing the singleton class to get
access to the singleton instance
 Any client method can use the singleton instance

without mentioning the singleton in the parameter
list

14

A Silly Example (cont)
public class Santa {

 private int numPresents;
 private static final Santa INSTANCE = new Santa();

 private Santa()
 { // initialize attributes here... }

 public static Santa getInstance()
 { return Santa.INSTANCE; }

 public Present givePresent() {
 Present p = new Present();
 this.numPresents--;
 return p;
 }
}

15

// client code in a method somewhere
public void gimme()
{
 Santa.getInstance().givePresent();
}

Lazy Instantiation

Notice that the previous singleton
implementation always creates the singleton
instance whenever the class is loaded
 If no client uses the instance then it was created

needlessly

 It is possible to delay creation of the singleton
instance until it is needed by using lazy
instantiation

16

Lazy Instantiation as per Notes
public class Santa {
 private static Santa INSTANCE = null;

 private Santa()
 { // ... }

 public static Santa getInstance()
 {
 if (Santa.INSTANCE == null) {
 Santa.INSTANCE = new Santa();
 }
 return Santa.INSTANCE;
 }
}

17

Singleton UML Class Diagram

18

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

One Instance per State
 The Java language specification guarantees that

identical String literals are not duplicated

 Prints: same object? true

 The compiler ensures that identical String literals
all refer to the same object
 A single instance per unique state

19

// client code somewhere

String s1 = "xyz";
String s2 = "xyz";

// how many String instances are there?
System.out.println("same object? " + (s1 == s2));

[notes 3.5]

Multiton

 A singleton class manages a single instance of the class
 A multiton class manages multiple instances of the class

 What do you need to manage multiple instances?
 A collection of some sort

 How does the client request an instance with a
particular state?
 It needs to pass the desired state as arguments to a method

20

Singleton vs Multiton UML Diagram

21

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

Multiton

- instances : Map
...

- Multiton()

+ getInstance(Object) : Multiton
...

Singleton vs Multiton

 Singleton
 One instance

private static final Santa INSTANCE = new Santa();

 Zero-parameter accessor

public static Santa getInstance()

22

Singleton vs Multiton

Multiton
 Multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

 Accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)

23

Making PhoneNumber a Multiton

1. Multiple instances (each with unique state)

 private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

2. Accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)

 getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

24

Making PhoneNumber a Multiton

3. Require private constructors
 To prevent clients from creating instances on their

own
 clients should use getInstance()

4. Require immutability of PhoneNumbers
 To prevent clients from modifying state, thus

making the keys inconsistent with the PhoneNumbers
stored in the map

 Recall the recipe for immutability...

25

26

public class PhoneNumber implements Comparable<PhoneNumber>
{
 private static final Map<String, PhoneNumber> instances =
 new TreeMap<String, PhoneNumber>();

 private final short areaCode;
 private final short exchangeCode;
 private final short stationCode;

 private PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode)
 { // identical to previous versions }

27

 public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)
 {
 String key = "" + areaCode + exchangeCode + stationCode;
 PhoneNumber n = PhoneNumber.instances.get(key);
 if (n == null)
 {
 n = new PhoneNumber(areaCode, exchangeCode, stationCode);
 PhoneNumber.instances.put(key, n);
 }
 return n;
 }
 // remainder of PhoneNumber class ...

28

public class PhoneNumberClient {

 public static void main(String[] args)
 {
 PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);
 PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);
 PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

 System.out.println("x equals y: " + x.equals(y) +
 " and x == y: " + (x == y));

 System.out.println("x equals z: " + x.equals(z) +
 " and x == z: " + (x == z));
 }
}

x equals y: true and x == y: true
x equals z: false and x == z: false

Map

A map stores key-value pairs
Map<String, PhoneNumber>

Values are put into the map using the key

29

key type value type

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648"

m.put(key, ago);

[AJ 16.2]

Values can be retrieved from the map using
only the key
 If the key is not in the map the value returned is null

30

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago);

PhoneNumber gallery = m.get(key); // == ago
PhoneNumber art = m.get("4169796648"); // == ago

PhoneNumber pizza = m.get("4169671111"); // == null

A map is not allowed to hold duplicate keys
 If you re-use a key to insert a new object, the existing object

corresponding to the key is removed and the new object inserted

31

// client code somewhere
Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago); // add ago
System.out.println(m);

m.put(key, new PhoneNumber(905, 760, 1911)); // replaces ago
System.out.println(m);

{4169796648=(416) 979-6648}
{4169796648=(905) 760-1911}

Prints

Mutable Keys

 From
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

 Note: great care must be exercised if mutable
objects are used as map keys. The behavior of a
map is not specified if the value of an object is
changed in a manner that affects equals
comparisons while the object is a key in the map.

32

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

33

public class MutableKey
{
 public static void main(String[] args)
 {
 Map<Date, String> m = new TreeMap<Date, String>();
 Date d1 = new Date(100, 0, 1);
 Date d2 = new Date(100, 0, 2);
 Date d3 = new Date(100, 0, 3);
 m.put(d1, "Jan 1, 2000");
 m.put(d2, "Jan 2, 2000");
 m.put(d3, "Jan 3, 2000");
 d3.setYear(101); // mutator
 System.out.println("d1 " + m.get(d1)); // d1 Jan 1, 2000
 System.out.println("d2 " + m.get(d2)); // d2 Jan 2, 2000
 System.out.println("d3 " + m.get(d3)); // d3 null
 }
}

change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen

Static Factory Method

Notice that Singleton and Multiton use a static
method to return an instance of a class
A static method that returns an instance of a

class is called a static factory method
 Factory because, as far as the client is concerned,

the method creates an instance
 Similar to a constructor

34

