
Implementing 
Linked Lists (pt. 2) 
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Based on slides by Prof. Burton Ma 



Iterable Interface 

public interface Iterable<T>  
 
Implementing this interface allows an object to 
be the target of the "foreach" statement. 
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Iterator<T> iterator() 

Returns an iterator over a set of elements of type T. 



Iterator 

• To implement Iterable we need to provide an 
iterator object that can iterate over the 
elements in the list 
 

public interface Iterator<E>  
An iterator over a collection. 
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boolean hasNext() 

Returns true if the iteration has more elements. 

E next() 

Returns the next element in the iteration. 

void remove() 

Removes from the underlying  collection the last element 
returned by this iterator (optional operation). 



Implementing Iterable 

• Having our linked list implement Iterable 
would be very convenient for clients 
 

// for some LinkedList t 
 
for (Character c : t) { 
  // do something with c 
} 
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Iterable Interface 

public interface Iterable<T>  
 
Implementing this interface allows an object to 
be the target of the "foreach" statement. 
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Iterator<T> iterator() 

Returns an iterator over a set of elements of type T. 



Iterator 

• To implement Iterable we need to provide an 
iterator object that can iterate over the 
elements in the list 
 

public interface Iterator<E>  
An iterator over a collection. 
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boolean hasNext() 

Returns true if the iteration has more elements. 

E next() 

Returns the next element in the iteration. 

void remove() 

Removes from the underlying  collection the last element 
returned by this iterator (optional operation). 



LinkedList Iterator 

• Think of the iterator as lying between 
elements in the list (like a cursor) 
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LinkedList Iterator 

• Think of the iterator as lying between 
elements in the list (like a cursor) 
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LinkedList Iterator 

• Because the iterator is between elements, 
there is a current element and next element 
of the iteration 
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LinkedList Iterator 

• The current element is null at the start of the 
iteration 
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LinkedList Iterator 

• The next element is null at the end of the 
iteration 
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LinkedList Iterator 

• Both the current and next elements are null if 
the list is empty 
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LinkedList Iterator: hasNext 

• hasNext() returns true if there is at least one 
more element in the iteration 
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LinkedList Iterator: hasNext 

• hasNext() returns false at the end of the 
iteration 
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LinkedList Iterator: next 

• Invoking next() returns the next element… 
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LinkedList Iterator: next 

• …and causes the iterator to move to its next 
position in the iteration 
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LinkedList Iterator: next 

• Invoking next() at the end of the iteration 
causes a NoSuchElementException to be 
thrown 
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LinkedList Iterator: remove 

• remove() causes the element most recently 
returned by next() to be removed from the 
linked list  
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LinkedList Iterator: remove 

• Notice that the iterator needs to know what 
was the previous element of the iteration 
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LinkedList Iterator: remove 

• After removing the element the current 
element and previous element are the same 
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LinkedList Iterator: remove 

• Invoking remove() a second time causes an 
IllegalStateException to be thrown  
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LinkedList Iterator: remove 

• Invoking remove() before calling next() also 
causes and IllegalStateException to be 
thrown 
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LinkedList Iterator: remove 

• Note that using an iterator and remove() is the 
safest way to iterate over a collection and 
selectively remove elements from the 
collection 
– Called filtering 
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LinkedList Iterator: remove 
// removes vowels from our LinkedList t 
 
for (Iterator<Character> i = t.iterator(); 
     i.hasNext(); ) { 
  char c = i.next(); 
  if (String.valueOf(c).matches("[aeiou]")) { 
    System.out.println("removing " + c); 
    i.remove(); 
  } 
} 
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Implementation 

• currNode  
– Reference to the node most recently returned by 
next()  

• This means that currNode is null at the start of the 
iteration 

– Requires special treatment in methods 

• prevNode  
– Reference to the node previous to currNode   

• Needed for remove()  
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Implementation: Attributes and Ctor 

 
private class LinkedListIterator implements 
Iterator<Character> { 
 
  private Node currNode; 
  private Node prevNode; 
 
  public LinkedListIterator() { 
    this.currNode = null; 
    this.prevNode = null; 
  } 
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Implementation: hasNext 

 
 

@Override 
public boolean hasNext() { 
  if (this.currNode == null) { 
    return head != null; 
  } 
  return this.currNode.next != null; 
} 
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Implementation: next 
@Override 
public Character next() { 
  if (!this.hasNext()) { 
    throw new NoSuchElementException(); 
  } 
  this.prevNode = this.currNode; 
  if (this.currNode == null) { 
    this.currNode = head; 
  } 
  else { 
    this.currNode = this.currNode.next; 
  } 
  return this.currNode.data; 
} 
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Implementation: remove 
@Override 
public void remove() { 
  if (this.prevNode == this.currNode) { 
    throw new IllegalStateException(); 
  } 
  if (this.currNode == head) { 
    head = this.currNode.next; 
  } 
  else { 
    this.prevNode.next = this.currNode.next; 
  } 
  this.currNode = this.prevNode; 
  size--; 
} 
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LinkedList Summary 

• Each node can be thought of as the head of a 
smaller list 
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LinkedList Summary 

• Each node can be thought of as the head of a 
smaller list 
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LinkedList Summary 

• Each node can be thought of as the head of a 
smaller list 
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LinkedList Summary 

• Each node can be thought of as the head of a 
smaller list 
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LinkedList Summary 

• The recursive structure of the linked list leads 
to recursive algorithms that operate on the list 
 

  private static boolean contains(char c, Node node) { 
    if (node.data == c) { 
      return true; 
    } 
    if (node.next == null) { 
      return false; 
    } 
    return LinkedList.contains(c, node.next); 
  } 
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LinkedList Summary 

• Nodes are an implementation detail 
– The client only cares about the elements 

(characters) in the list 
 

• Node is implemented as a private static inner 
class 
– private so that only LinkedList can use it 
– static because Node does not need access to any 

non-static attribute of LinkedList  
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LinkedList Summary 

• By implementing the Iterable interface we give 
clients the ability to iterate over the elements of 
the list 

• Clients expect to be able to do this for most 
collections 
 

  // for some LinkedList t 
 
  for (Character c : t) { 
    // do something with c 
  } 
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LinkedList Summary 

• To implement Iterable we need to provide an 
iterator object that can iterate over the 
elements in the list 
 

public interface Iterator<E>  
An iterator over a collection. 
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boolean hasNext() 

Returns true if the iteration has more elements. 

E next() 

Returns the next element in the iteration. 

void remove() 

Removes from the underlying  collection the last element 
returned by this iterator (optional operation). 


