
Implementing
Linked Lists (pt. 2)

1

Based on slides by Prof. Burton Ma

Iterable Interface

public interface Iterable<T>

Implementing this interface allows an object to
be the target of the "foreach" statement.

2

Iterator<T> iterator()

Returns an iterator over a set of elements of type T.

Iterator

• To implement Iterable we need to provide an
iterator object that can iterate over the
elements in the list

public interface Iterator<E>
An iterator over a collection.

3

boolean hasNext()

Returns true if the iteration has more elements.

E next()

Returns the next element in the iteration.

void remove()

Removes from the underlying collection the last element
returned by this iterator (optional operation).

Implementing Iterable

• Having our linked list implement Iterable
would be very convenient for clients

// for some LinkedList t

for (Character c : t) {
 // do something with c
}

4

Iterable Interface

public interface Iterable<T>

Implementing this interface allows an object to
be the target of the "foreach" statement.

5

Iterator<T> iterator()

Returns an iterator over a set of elements of type T.

Iterator

• To implement Iterable we need to provide an
iterator object that can iterate over the
elements in the list

public interface Iterator<E>
An iterator over a collection.

6

boolean hasNext()

Returns true if the iteration has more elements.

E next()

Returns the next element in the iteration.

void remove()

Removes from the underlying collection the last element
returned by this iterator (optional operation).

LinkedList Iterator

• Think of the iterator as lying between
elements in the list (like a cursor)

7

'a' 'x'

LinkedList

 head 'r'

i

iterator between 'x' and 'r'

LinkedList Iterator

• Think of the iterator as lying between
elements in the list (like a cursor)

8

'a' 'x'

LinkedList

 head 'r'

i

iterator at the start of the iteration
(between nothing and 'a')

LinkedList Iterator

• Because the iterator is between elements,
there is a current element and next element
of the iteration

9

'a' 'x'

LinkedList

 head 'r'

i

iterator between 'x' and 'r'

current
element

next
element

LinkedList Iterator

• The current element is null at the start of the
iteration

10

'a' 'x'

LinkedList

 head 'r'

i

iterator at the start of the iteration
(between nothing and 'a')

next
element

null

LinkedList Iterator

• The next element is null at the end of the
iteration

11

'a' 'x'

LinkedList

 head 'r'

i

iterator between 'x' and nothing

current
element

null

LinkedList Iterator

• Both the current and next elements are null if
the list is empty

12

LinkedList

 head

i

iterator at the start of the iteration

null

null

LinkedList Iterator: hasNext

• hasNext() returns true if there is at least one
more element in the iteration

13

'a' 'x'

LinkedList

 head 'r'

i

i.hasNext() is true

next
element

LinkedList Iterator: hasNext

• hasNext() returns false at the end of the
iteration

14

'a' 'x'

LinkedList

 head 'r'

i

i.hasNext() is false

current
element

null

LinkedList Iterator: next

• Invoking next() returns the next element…

15

'a' 'x'

LinkedList

 head 'r'

i

i.next() == 'a' is true

next
element

LinkedList Iterator: next

• …and causes the iterator to move to its next
position in the iteration

16

'a' 'x'

LinkedList

 head 'r'

i

current
element

next
element

LinkedList Iterator: next

• Invoking next() at the end of the iteration
causes a NoSuchElementException to be
thrown

17

'a' 'x'

LinkedList

 head 'r'

i

i.next() causes a
NoSuchElementException

current
element

null

LinkedList Iterator: remove

• remove() causes the element most recently
returned by next() to be removed from the
linked list

18

'a' 'x'

LinkedList

 head 'r'

i

i.remove() causes
'x' to be removed

current
element

next
element

LinkedList Iterator: remove

• Notice that the iterator needs to know what
was the previous element of the iteration

19

'a'

LinkedList

 head 'r'

i

next
element

previous
element

LinkedList Iterator: remove

• After removing the element the current
element and previous element are the same

20

'a'

LinkedList

 head 'r'

i

next
element

previous
element

current
element

LinkedList Iterator: remove

• Invoking remove() a second time causes an
IllegalStateException to be thrown

21

'a'

LinkedList

 head 'r'

i

next
element

i.remove() causes an
IllegalStateException

previous
element

current
element

LinkedList Iterator: remove

• Invoking remove() before calling next() also
causes and IllegalStateException to be
thrown

22

'a' 'x'

LinkedList

 head 'r'

i

next
element

i.remove() causes an
IllegalStateException

null null

no current or
previous element

LinkedList Iterator: remove

• Note that using an iterator and remove() is the
safest way to iterate over a collection and
selectively remove elements from the
collection
– Called filtering

23

LinkedList Iterator: remove
// removes vowels from our LinkedList t

for (Iterator<Character> i = t.iterator();
 i.hasNext();) {
 char c = i.next();
 if (String.valueOf(c).matches("[aeiou]")) {
 System.out.println("removing " + c);
 i.remove();
 }
}

24

Implementation

• currNode
– Reference to the node most recently returned by
next()

• This means that currNode is null at the start of the
iteration

– Requires special treatment in methods

• prevNode
– Reference to the node previous to currNode

• Needed for remove()

25

Implementation: Attributes and Ctor

private class LinkedListIterator implements
Iterator<Character> {

 private Node currNode;
 private Node prevNode;

 public LinkedListIterator() {
 this.currNode = null;
 this.prevNode = null;
 }

26

Implementation: hasNext

@Override
public boolean hasNext() {
 if (this.currNode == null) {
 return head != null;
 }
 return this.currNode.next != null;
}

27

Implementation: next
@Override
public Character next() {
 if (!this.hasNext()) {
 throw new NoSuchElementException();
 }
 this.prevNode = this.currNode;
 if (this.currNode == null) {
 this.currNode = head;
 }
 else {
 this.currNode = this.currNode.next;
 }
 return this.currNode.data;
}

28

Implementation: remove
@Override
public void remove() {
 if (this.prevNode == this.currNode) {
 throw new IllegalStateException();
 }
 if (this.currNode == head) {
 head = this.currNode.next;
 }
 else {
 this.prevNode.next = this.currNode.next;
 }
 this.currNode = this.prevNode;
 size--;
}

29

LinkedList Summary

• Each node can be thought of as the head of a
smaller list

30

'a' 'x'

LinkedList

 head 'r' 'a'

head of
['a', 'x', 'r', 'a']

LinkedList Summary

• Each node can be thought of as the head of a
smaller list

31

'a' 'x'

LinkedList

 head 'r' 'a'

head of
['x', 'r', 'a']

LinkedList Summary

• Each node can be thought of as the head of a
smaller list

32

'a' 'x'

LinkedList

 head 'r' 'a'

head of
['r', 'a']

LinkedList Summary

• Each node can be thought of as the head of a
smaller list

33

'a' 'x'

LinkedList

 head 'r' 'a'

head of
['a']

LinkedList Summary

• The recursive structure of the linked list leads
to recursive algorithms that operate on the list

 private static boolean contains(char c, Node node) {
 if (node.data == c) {
 return true;
 }
 if (node.next == null) {
 return false;
 }
 return LinkedList.contains(c, node.next);
 }

34

LinkedList Summary

• Nodes are an implementation detail
– The client only cares about the elements

(characters) in the list

• Node is implemented as a private static inner
class
– private so that only LinkedList can use it
– static because Node does not need access to any

non-static attribute of LinkedList

35

LinkedList Summary

• By implementing the Iterable interface we give
clients the ability to iterate over the elements of
the list

• Clients expect to be able to do this for most
collections

 // for some LinkedList t

 for (Character c : t) {
 // do something with c
 }

36

LinkedList Summary

• To implement Iterable we need to provide an
iterator object that can iterate over the
elements in the list

public interface Iterator<E>
An iterator over a collection.

37

boolean hasNext()

Returns true if the iteration has more elements.

E next()

Returns the next element in the iteration.

void remove()

Removes from the underlying collection the last element
returned by this iterator (optional operation).

