Implementing
Linked Lists (pt. 2)

Based on slides by Prof. Burton Ma



Iterable Interface

public Interface lterable<T>

Implementing this interface allows an object to
be the target of the "foreach" statement.

Iterator<T> iterator()

Returns an iterator over a set of elements of type T.



Ilterator

 To implement Iterable we need to provide an
iterator object that can iterate over the
elements in the list

boolean hasNext()

Returns true if the iteration has more elements.
E next()

Returns the next element in the iteration.

void remove()

Removes from the underlying collection the last element
returned by this iterator (optional operation).



Implementing Iterable

 Having our linked list implement Iterable
would be very convenient for clients

// for some LinkedList t

for (Character c - t) {
// do something with c

}



Iterable Interface

public Interface lterable<T>

Implementing this interface allows an object to
be the target of the "foreach" statement.

Iterator<T> iterator()

Returns an iterator over a set of elements of type T.



Ilterator

 To implement Iterable we need to provide an
iterator object that can iterate over the
elements in the list

boolean hasNext()

Returns true if the iteration has more elements.
E next()

Returns the next element in the iteration.

void remove()

Removes from the underlying collection the last element
returned by this iterator (optional operation).



LinkedList Iterator

 Think of the iterator as lying between

LinkedList

head ¢-—

—1 X" @ 3| "r* ¢

elements in the list (like a cursor)

iterator between 'x' and 'r'



LinkedList Iterator

nink of the iterator as lying between
ements in the list (like a cursor)

LinkedList

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢

iterator at the start of the iteration
(between nothing and 'a')



LinkedList Iterator

e Because the iterator is between elements,
there is a current element and next element

0]

fLiihedtetation

head ¢—+——>

a

o—

current
element

- -

X

next
element

> ‘r' o

iterator between 'x' and 'r'



LinkedList Iterator

e The current element is null at the start of the
iteration :

LinkedList element

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢

null '

iterator at the start of the iteration
(between nothing and 'a')




LinkedList Iterator

e The next element is null at the end of the
iteration t ”

LinkedList element

iterator between 'x' and nothing

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢

11



LinkedList Iterator

e Both the current and next elements are null if

the list is empty

LinkedList

null

head @

null '

iterator at the start of the iteration

12



LinkedList Iterator: hasNext

« hasNext() returns true if there is at least one
more element in the iteration

next
LinkedList element

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢

1.hasNext() is true




LinkedList Iterator: hasNext

« hasNext() returns false at the end of the
iteration t ”

LinkedList element

1.hasNext() is False

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢

14



LinkedList Iterator: next

e Invoking next() returns the next element...

next
LinkedList element

head e—1—>| "a" o——> "X" o—> "Ir" o

1.next() == "a" is true




LinkedList Iterator: next

e ...and causes the iterator to move to its next
position in the iteration

current next
LinkedList element element

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢




LinkedList Iterator: next

« Invoking next() at the end of the iteration
causes a NoSuchElementException to be

current null

t“'\lr-@'wm—iSt element

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢
1.next() causes a

NoSuchElementException

17



LinkedList Iterator: remove

- remove() causes the element most recently
returned by next() to be removed from the

nleddigst

head ¢-—

current
element

'XI

next
element

NE

r‘e

1.remove() causes
'x' to be removed

18



LinkedList Iterator: remove

 Notice that the iterator needs to know what
was the previous element of the iteration

LinkedList

head ¢-—

previous
element

-a.

next
element

NE

r‘e

19



LinkedList Iterator: remove

o After removing the element the current
ement and previous element are the same

e

LinkedList

head ¢-—

previous
element

-a.

next
element

current
element

NE

r‘e

20



LinkedList Iterator: remove

* |Invoking remove() a second time causes an
111egalStateException to be thrown

previous next
LinkedList element element
head ¢—+—>| "a" @ > "r* o

current
element

1.remove() causes an
Il legalStateException



LinkedList Iterator: remove

* Invoking remove() before calling next() also
causes and 11legalStateException to be

next

t“'\lrmwm—iSt element

head e—1—>| "a" o——> "X" o—>{ "Ir" ¢

null null
™
no current or
previous element

1.remove() causes an
I1legalStateException




LinkedList Iterator: remove

* Note that using an iterator and remove() is the
safest way to iterate over a collection and
selectively remove elements from the

collection
— Called filtering



LinkedList Iterator: remove

// removes vowels from our LinkedList t

for (Iterator<Character> i = t.iterator();
i.hasNext(); ) {
char ¢ = i.next();
if (String.valueOf(c).matches("[aeiou]")) {
System.out.printin("removing " + c);
i.remove();

J
J



Implementation

e currNode

— Reference to the node most recently returned by
next()

* This means that currNode is null I at the start of the
iteration

— Requires special treatment in methods

 prevNode

— Reference to the node previous to currNode
* Needed for remove()



Implementation: Attributes and Ctor

private class LinkedListlterator implements
Iterator<Character> {

private Node currNode;
private Node prevNode;

public LinkedListlterator() {
this.currNode = null;
this.prevNode = null;

}



Implementation: hasNext

@Override
public boolean hasNext() {

if (this.currNode == null) {
return head != null;

}

return this.currNode.next != null;

J



Implementation: next

@Override
public Character next() {
if (1this.hasNext()) {
throw new NoSuchElementException();
}
this.prevNode = this.currNode;
if (this.currNode == null) {
this.currNode = head;
}
else {
this.currNode = this.currNode.next;

}

return this.currNode.data;

}



Implementation: remove

@Override
public void remove() {
if (this.prevNode == this.currNode) {
throw new lllegalStateException();
}
if (this.currNode == head) {
head = this.currNode.next;

}
else {
this.prevNode.next = this.currNode.next;
}
this.currNode = this.prevNode;
size--;



LinkedList Summary

 Each node can be thought of as the head of a
smaller list

LinkedList

head e—4—>| "a" e——> "x" @ > "r- o4—> @

head of
['a', 'X', 'I"', 'a']



LinkedList Summary

 Each node can be thought of as the head of a
smaller list

LinkedList

head e—4—>| "a" e——> "x" @ > "r- o4—> @

head of
[.X., .r.’ .a.]



LinkedList Summary

 Each node can be thought of as the head of a
smaller list

LinkedList

head e—4—>| "a" e——> "x" @ > "r- o4—> @

head of
[.r., .a.]

32



LinkedList Summary

 Each node can be thought of as the head of a
smaller list

LinkedList

head e—4—>| "a" e——> "x" @ > "r- o4—> @

33



LinkedList Summary

e The recursive structure of the linked list leads
to recursive algorithms that operate on the list

private static boolean contains(char c, Node node) {
IT (hode.data == ¢) {
return true;

+
IT (node.next == null) {

return false;

}

return LinkedList.contains(c, node.next);



LinkedList Summary

* Nodes are an implementation detail

— The client only cares about the elements
(characters) in the list

- Node is implemented as a private static inner
class

— private so that only LinkedL 1St can use it

— static because Node does not need access to any
non-static attribute of LinkedLi1st



LinkedList Summary

By implementing the Iterable interface we give
clients the ability to iterate over the elements of

the list

e Clients expect to be able to do this for most
collections

// Tor some LinkedList t

for (Character c - t) {
// do something with c

}



LinkedList Summary

 To implement Iterable we need to provide an
iterator object that can iterate over the
elements in the list

boolean hasNext()

Returns true if the iteration has more elements.
E next()

Returns the next element in the iteration.

void remove()

Removes from the underlying collection the last element
returned by this iterator (optional operation).



