
Inheritance (pt 3)

1

Based on slides by Prof. Burton Ma

Static Methods and Inheritance

• There is a big difference between calling a
static method and calling a non-static method
when dealing with inheritance

• There is no dynamic dispatch on static
methods

2

3

public abstract class Dog {
 private static int numCreated = 0;
 public static int getNumCreated() {
 return Dog.numCreated;
 }
}

public class Mix {
 private static int numMixCreated = 0;
 public static int getNumCreated() {
 return Mix.numMixCreated;
 }
}

public class Komondor {
 private static int numKomondorCreated = 0;
 public static int getNumCreated() {
 return Komondor.numKomondorCreated;
 }
}

notice no @Override

notice no @Override

4

public class WrongCount {
 public static void main(String[] args) {
 Dog mutt = new Mix();
 Dog shaggy = new Komondor();
 System.out.println(mutt.getNumCreated());
 System.out.println(shaggy.getNumCreated());
 System.out.println(Mix.getNumCreated());
 System.out.println(Komondor.getNumCreated());
 }
}

prints 2
 2
 1
 1

What's Going On?

• There is no dynamic dispatch on static methods

• Because the declared type of mutt is Dog, it is
the Dog version of getNumCreated that is
called

• Because the declared type of shaggy is Dog, it
is the Dog version of getNumCreated that is
called

5

Hiding Methods

• Notice that Mix.getNumCreated and
Komondor.getNumCreated work as
expected

• If a subclass declares a static method with the
same name as a superclass static method, we say
that the subclass static method hides the
superclass static method
– You cannot override a static method, you can only hide

it
– Hiding static methods is considered bad form because

it makes code hard to read and understand

6

• The client code in WrongCount illustrates
two cases of bad style, one by the client and
one by the implementer of the Dog hierarchy
1. The client should not have used an instance to call

a static method
2. The implementer should not have hidden the

static method in Dog

7

Interfaces

• Recall that you typically use an abstract class
when you have a superclass that has attributes
and methods that are common to all subclasses
– The abstract class provides a partial implementation

that the subclasses must complete
– Subclasses can only inherit from a single superclass

• If you want classes to support a common API
then you probably want to define an interface

8

Interfaces

• In Java an interface is a reference type (similar
to a class)

• An interface says what methods an object
must have and what the methods are
supposed to do
– I.e., an interface is an API

9

Interfaces

• An interface can contain only
– Constants
– Method signatures
– Nested types (ignore for now)

• There are no method bodies
• Interfaces cannot be instantiated—they can

only be implemented by classes or extended
by other interfaces

10

Interfaces Already Seen

public interface Comparable<T>
{
 int compareTo(T o);
}

11

access—either public or
package-private (blank)

interface
name

Interfaces Already Seen
public interface Iterable<T>
{
 Iterator<T> iterator();
}

public interface Collection<E> extends Iterable<E>
{
 boolean add(E e);
 void clear();
 boolean contains(Object o);
 // many more method signatures...
}

12

access—either public or
package-private (blank)

interface
name

parent
interfaces

Interfaces Already Seen

public interface List<E> extends Collection<E>
{
 boolean add(E e);
 void add(int index, E element);
 boolean addAll(Collection<? extends E> c);
 // many more method signatures...
}

13

Creating an Interface

• Decide on a name
• Decide what methods you need in the

interface

• This is harder than it sounds because...
– Once an interface is released and widely

implemented, it is almost impossible to change
• If you change the interface, all classes implementing

the interface must also change

14

Function Interface

• In mathematics, a real-valued scalar function
of one real scalar variable maps a real value to
another real value

15

y = f (x)

Creating an Interface

• Decide on a name
– DoubleToDoubleFunction

• Decide what methods you need in the

interface
– double evaluate(double x)
– double[] evaluate(double[] x)

16

Creating an Interface

public interface DoubleToDoubleFunction {
 double at(double x);
 double[] at(double[] x);
}

17

Classes that Implement an Interface

• A class that implements an interface says so
by using the implements keyword
– Consider the function f (x) = x2

18

public Square implements DoubleToDoubleFunction {
 public double at(double x) {
 return x * x;
 }

 public double[] at(double[] x) {
 double[] result = new double[x.length];
 for (int i = 0; i < x.length; i++) {
 result[i] = x[i] * x[i];
 }
 return result;
 }
}

19

Implementing Multiple Interfaces

• Unlike inheritance where a subclass can
extend only one superclass, a class can
implement as many interfaces as it needs to

public class ArrayList<E>
 extends AbstractList<E>
 implements List<E>,
 RandomAccess,
 Cloneable,
 Serializable

20

superclass

interfaces

