
Inheritance (pt 2)

1

Based on slides by Prof. Burton Ma

Preconditions and Inheritance

• Precondition
– What the method assumes to be true about the

arguments passed to it

• Inheritance (is-a)
– A subclass is supposed to be able to do everything

its superclasses can do

• How do they interact?

2

Strength of a Precondition

• To strengthen a precondition means to make
the precondition more restrictive

// Dog setEnergy
// 1. no precondition
// 2. 1 <= energy
// 3. 1 <= energy <= 10
public void setEnergy(int energy)
{ ... }

3

weakest precondition

strongest precondition

Preconditions on Overridden Methods

• A subclass can change a precondition on a method
but it must not strengthen the precondition
– A subclass that strengthens a precondition is saying that it

cannot do everything its superclass can do

4

// Dog setEnergy
// assume non-final
// @pre. none

public
void setEnergy(int nrg)
{ // ... }

// Mix setEnergy
// bad : strengthen precond.
// @pre. 1 <= nrg <= 10

public
void setEnergy(int nrg)
{
if (nrg < 1 || nrg > 10)
{ // throws exception }
// ...

}

• Client code written for Dogs now fails when given
a Mix

• Remember: a subclass must be able to do
everything its ancestor classes can do; otherwise,
clients will be (unpleasantly) surprised

5

// client code that sets a Dog's energy to zero
public void walk(Dog d)
{
d.setEnergy(0);

}

Postconditions and Inheritance

• Postcondition
– What the method promises to be true when it returns

• The method might promise something about its return value
– “Returns size where size is between 1 and 10 inclusive"

• The method might promise something about the state of the
object used to call the method

– “Sets the size of the dog to the specified size"

• The method might promise something about one of its
parameters

• How do postconditions and inheritance interact?

6

Strength of a Postcondition

• To strengthen a postcondition means to make
the postcondition more restrictive

// Dog getSize
// 1. no postcondition
// 2. 1 <= this.size
// 3. 1 <= this.size <= 10
public int getSize()
{ ... }

7

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods

• A subclass can change a postcondition on a method
but it must not weaken the postcondition
– A subclass that weakens a postcondition is saying that it

cannot do everything its superclass can do

8

// Dog getSize
//
// @post. 1 <= size <= 10

public
int getSize()
{ // ... }

// Dogzilla getSize
// bad : weaken postcond.
// @post. 1 <= size

public
int getSize()
{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

• Client code written for Dogs can now fail when given a
Dogzilla

• Remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

9

// client code that assumes Dog size <= 10
public String sizeToString(Dog d)
{
int sz = d.getSize();
String result = "";
if (sz < 4) result = "small";
else if (sz < 7) result = "medium";
else if (sz <= 10) result = "large";
return result;

}

Exceptions

• All exceptions are objects that are subclasses of
java.lang.Throwable

10

Throwable

Exception

RuntimeException and many, many more

IllegalArgumentException and many more

AJ chapter 9

User Defined Exceptions

• You can define your own exception hierarchy
– Often, you will subclass Exception

11

Exception

DogException

BadSizeException NoFoodException BadDogException

public
class DogException extends Exception

Exceptions and Inheritance

• A method that claims to throw an exception of
type X is allowed to throw any exception type
that is a subclass of X
– This makes sense because exceptions are objects and

subclass objects are substitutable for ancestor classes

// in Dog
public void someDogMethod() throws DogException
{
// can throw a DogException, BadSizeException,
// NoFoodException, or BadDogException

}

12

• A method that overrides a superclass method that
claims to throw an exception of type X must also
throw an exception of type X or a subclass of X
– Remember: a subclass promises to do everything its

superclass does; if the superclass method claims to
throw an exception then the subclass must also

// in Mix
@Override
public void someDogMethod() throws DogException
{
// ...

}

13

Which are Legal?

• In Mix
@Override
public void someDogMethod() throws BadDogException

@Override
public void someDogMethod() throws Exception

@Override
public void someDogMethod()

@Override
public void someDogMethod()

throws DogException, IllegalArgumentException

14

Inheritance Recap

• Inheritance allows you to create subclasses that
are substitutable for their ancestors
– Inheritance interacts with preconditions,

postconditions, and exception throwing
• Subclasses

– Inherit all non-private features
– Can add new features
– Can change the behaviour of non-final methods by

overriding the parent method
– Contain an instance of the superclass

• Subclasses must construct the instance via a superclass
constructor

15

Polymorphism

• Inheritance allows you to define a base class
that has attributes and methods
– Classes derived from the base class can use the

public and protected base class attributes and
methods

• Polymorphism allows the implementer to
change the behaviour of the derived class
methods

16

// client code
public void print(Dog d) {
System.out.println(d.toString());

}

// later on...
Dog fido = new Dog();
CockerSpaniel lady = new CockerSpaniel();
Mix mutt = new Mix();
this.print(fido);
this.print(lady);
this.print(mutt);

17

Dog toString
CockerSpaniel toString
Mix toString

• Notice that fido, lady, and mutt were
declared as Dog, CockerSpaniel, and
Mutt

• What if we change the declared type of fido,
lady, and mutt ?

18

// client code
public void print(Dog d) {
System.out.println(d.toString());

}

// later on...
Dog fido = new Dog();
Dog lady = new CockerSpaniel();
Dog mutt = new Mix();
this.print(fido);
this.print(lady);
this.print(mutt);

19

Dog toString
CockerSpaniel toString
Mix toString

• What if we change the print method
parameter type to Object ?

20

// client code
public void print(Object obj) {
System.out.println(obj.toString());

}

// later on...
Dog fido = new Dog();
Dog lady = new CockerSpaniel();
Dog mutt = new Mix();
this.print(fido);
this.print(lady);
this.print(mutt);
this.print(new Date());

21

Dog toString
CockerSpaniel toString
Mix toString
Date toString

Late Binding

• Polymorphism requires late binding of the
method name to the method definition
– Late binding means that the method definition is

determined at run-time

22

obj.toString()
non-static methodrun-time type of

the instance obj

Declared vs Run-time type

23

Dog lady = new CockerSpaniel();

declared
type

run-time or actual
type

• The declared type of an instance determines
what methods can be used

– The name lady can only be used to call methods
in Dog

– lady.someCockerSpanielMethod() won't
compile

24

Dog lady = new CockerSpaniel();

• The actual type of the instance determines what
definition is used when the method is called

– lady.toString() uses the CockerSpaniel
definition of toString

25

Dog lady = new CockerSpaniel();

Abstract Classes

• Sometimes you will find that you want the API for
a base class to have a method that the base class
cannot define
– E.g. you might want to know what a Dog's bark

sounds like but the sound of the bark depends on the
breed of the dog

• You want to add the method bark to Dog but only the
subclasses of Dog can implement bark

– E.g. you might want to know the breed of a Dog but
only the subclasses have information about the breed

• You want to add the method getBreed to Dog but only
the subclasses of Dog can implement getBreed

26

Abstract Classes

• Sometimes you will find that you want the API
for a base class to have a method that the
base class cannot define
– E.g. you might want to know the breed of a Dog

but only the subclasses have information about
the breed

• You want to add the method getBreed to Dog but
only the subclasses of Dog can implement getBreed

27

• If the base class has methods that only subclasses can
define and the base class has attributes common to all
subclasses then the base class should be abstract
– If you have a base class that just has methods that it

cannot implement then you probably want an interface

• Abstract :
• (Dictionary definition) existing only in the mind

• In Java an abstract class is a class that you cannot make
instances of

28

• An abstract class provides a partial definition of a class
– The subclasses complete the definition

• An abstract class can define attributes and methods
– Subclasses inherit these

• An abstract class can define constructors
– Subclasses can call these

• An abstract class can declare abstract methods
– Subclasses must define these (unless the subclass is also

abstract)

29

Abstract Methods

• An abstract base class can declare, but not define, zero or
more abstract methods

• The base class is saying "all Dogs can provide a String
describing the breed, but only the subclasses know enough
to implement the method"

30

public abstract class Dog
{
// attributes, ctors, regular methods

public abstract String getBreed();
}

Abstract Methods

• The non-abstract subclasses must provide
definitions for all abstract methods
– Consider getBreed in Mix

31

public class Mix extends Dog

{ // stuff from before...

@Override public String getBreed() {

if(this.breeds.isEmpty()) {

return "mix of unknown breeds";

}

StringBuffer b = new StringBuffer();

b.append("mix of");

for(String breed : this.breeds) {

b.append(" " + breed);

}
return b.toString();

}

32

PureBreed

• A purebreed dog is a dog with a single breed
– One String attribute to store the breed

• Note that the breed is determined by the
subclasses
– The class PureBreed cannot give the breed

attribute a value
– But it can implement the method getBreed

• The class PureBreed defines an attribute
common to all subclasses and it needs the
subclass to inform it of the actual breed
– PureBreed is also an abstract class

33

public abstract class PureBreed extends Dog

{

private String breed;

public PureBreed(String breed) {

super();

this.breed = breed;

}

public PureBreed(String breed, int size, int energy) {

super(size, energy);

this.breed = breed;

}

34

@Override public String getBreed()

{

return this.breed;

}

}

35

Subclasses of PureBreed

• The subclasses of PureBreed are
responsible for setting the breed
– Consider Komondor

36

Komondor
public class Komondor extends PureBreed
{

private final String BREED = "komondor";

public Komondor() {
super(BREED);

}

public Komondor(int size, int energy) {
super(BREED, size, energy);

}

// other Komondor methods...
}

37

Static Attributes and Inheritance

• Static attributes behave the same as non-
static attributes in inheritance
– Public and protected static attributes are inherited

by subclasses, and subclasses can access them
directly by name

– Private static attributes are not inherited and
cannot be accessed directly by name

• But they can be accessed/modified using public and
protected methods

38

Static Attributes and Inheritance

• The important thing to remember about static
attributes and inheritance
– There is only one copy of the static attribute shared

among the declaring class and all subclasses

• Consider trying to count the number of Dog
objects created by using a static counter

39

// the wrong way to count the number of Dogs created
public abstract class Dog {

// other attributes...
static protected int numCreated = 0;

Dog() {
// ...
Dog.numCreated++;

}

public static int getNumberCreated() {
return Dog.numCreated;

}

// other contructors, methods...
}

40

protected, not private, so that
subclasses can modify it directly

// the wrong way to count the number of Dogs created

public class Mix extends Dog

{

// attributes...

Mix()

{

super();

Mix.numCreated++;

}

// other contructors, methods...

}

41

// too many dogs!

public class TooManyDogs

{

public static void main(String[] args)

{

Mix mutt = new Mix();

System.out.println(Mix.getNumberCreated());

}

}

prints 2

42

What Went Wrong?

• There is only one copy of the static attribute shared
among the declaring class and all subclasses
– Dog declared the static attribute
– Dog increments the counter everytime its constructor is

called
– Mix inherits and shares the single copy of the attribute
– Mix constructor correctly calls the superclass constructor

• Which causes numCreated to be incremented by Dog

– Mix constructor then incorrectly increments the counter

43

Counting Dogs and Mixes

• Suppose you want to count the number of
Dog instances and the number of Mix
instances
– Mix must also declare a static attribute to hold

the count
• Somewhat confusingly, Mix can give the counter the

same name as the counter declared by Dog

44

public class Mix extends Dog
{
// other attributes...
private static int numCreated = 0; // bad style

public Mix()
{

super(); // will increment Dog.numCreated
// other Mix stuff...
numCreated++; // will increment Mix.numCreated

}

// ...

45

Hiding Attributes

• Note that the Mix attribute numCreated has the
same name as an attribute declared in a superclass
– Whenever numCreated is used in Mix, it is the Mix

version of the attribute that is used

• If a subclass declares an attribute with the same name
as a superclass attribute, we say that the subclass
attribute hides the superclass attribute
– Considered bad style because it can make code hard to

read and understand
• Should change numCreated to numMixCreated in Mix

46

