
Inheritance (pt 1)

1

Based on slides by Prof. Burton Ma

Inheritance

• You know a lot about an object by knowing its
class
– For example what is a Komondor?

2

http://en.wikipedia.org/wiki/File:Komondor_delvin.jpg

3

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog
PureBreed is-a Object

Komondor is-a PureBreed
Komondor is-a Dog
Komondor is-a Object

4

...KomondorBloodHound

PureBreed Mix

Dog

Object

subclass of Object
superclass of PureBreed

subclass of Dog
superclass of Komondor

superclass of Dog
(and all other classes)

superclass ==
base class
parent class

subclass ==
derived class
extended class
child class

5

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends
PureBreed

Some Definitions

• We say that a subclass is derived from its superclass
• With the exception of Object, every class in Java has

one and only one superclass
– Java only supports single inheritance

• A class X can be derived from a class that is derived
from a class, and so on, all the way back to Object
– X is said to be descended from all of the classes in the

inheritance chain going back to Object
– All of the classes X is derived from are called ancestors of
X

6

Why Inheritance?

• A subclass inherits all of the non-private members
(attributes and methods but not constructors) from its
superclass
– If there is an existing class that provides some of the

functionality you need you can derive a new class from the
existing class

– The new class has direct access to the public and
protected attributes and methods without having to re-
declare or re-implement them

– The new class can introduce new attributes and methods
– The new class can re-define (override) its superclass

methods

7

Is-A

• Inheritance models the is-a relationship between classes

• From a Java point of view, is-a means you can use a
derived class instance in place of an ancestor class
instance

8

public someMethod(Dog dog)
{ // does something with dog }

// client code of someMethod

Komondor shaggy = new Komondor();
someMethod(shaggy);

Mix mutt = new Mix ();
someMethod(mutt);

Is-A Pitfalls

• Is-a has nothing to do with the real world

• Is-a has everything to do with how the
implementer has modelled the inheritance
hierarchy

• The classic example:
– Circle is-a Ellipse?

9

Circle

Ellipse

?

Circle is-a Ellipse?

• If Ellipse can do something that Circle
cannot, then Circle is-a Ellipse is false
– Remember: is-a means you can substitute a

derived class instance for one of its ancestor
instances

• If Circle cannot do something that Ellipse can do
then you cannot (safely) substitute a Circle instance
for an Ellipse instance

10

// method in Ellipse
/*
* Change the width and height of the ellipse.
* @param width The desired width.
* @param height The desired height.
* @pre. width > 0 && height > 0
*/
public void setSize(double width, double height)
{
this.width = width;
this.height = height;

}

11

• There is no good way for Circle to support setSize
(assuming that the attributes width and height are
always the same for a Circle) because clients expect
setSize to set both the width and height

• Can't Circle override setSize so that it throws an
exception if width != height?
– No; this will surprise clients because Ellipse setSize does

not throw an exception if width != height
• Can't Circle override setSize so that it sets
width == height?
– No; this will surprise clients because Ellipse setSize says

that the width and height can be different

12

• But I have a Ph.D. in Mathematics, and I'm
sure a Circle is a kind of an Ellipse! Does this
mean Marshall Cline is stupid? Or that C++ is
stupid? Or that OO is stupid?

• [C++ FAQs http://www.parashift.com/c++-faq-lite/proper-inheritance.html#faq-21.8]

– Actually, it doesn't mean any of these things. It
means your intuitive notion of "kind of" is leading
you to make bad inheritance decisions.

13

http://www.parashift.com/c++-faq-lite/proper-inheritance.html�

• What if there is no setSize method?
– If a Circle can do everything an Ellipse can

do then Circle can extend Ellipse

14

Implementing Inheritance

• Suppose you want to implement an inheritance
hierarchy that represents breeds of dogs for the
purpose of helping people decide what kind of
dog would be appropriate for them

• Many possible attributes:
– Appearance, size, energy, grooming requirements,

amount of exercise needed, protectiveness,
compatibility with children, etc.

– We will assume two attributes measured on a 10
point scale

• Size from 1 (small) to 10 (giant)
• Energy from 1 (lazy) to 10 (high energy)

15

Dog

public class Dog extends Object
{
private int size;
private int energy;

// creates an "average" dog
Dog()
{ this(5, 5); }

Dog(int size, int energy)
{ this.setSize(size); this.setEnergy(energy); }

16

public int getSize()
{ return this.size; }

public int getEnergy()
{ return this.energy; }

public final void setSize(int size)
{ this.size = size; }

public final void setEnergy(int energy)
{ this.energy = energy; }

}

17

Why final? Stay tuned…

What is a Subclass?

• A subclass looks like a new class that has the
same API as its superclass with perhaps some
additional methods and attributes

• Inheritance does more than copy the API of the
superclass
– The derived class contains a subobject of the parent

class
– The superclass subobject needs to be constructed

(just like a regular object)
• The mechanism to perform the construction of the

superclass subobject is to call the superclass constructor

18

Constructors of Subclasses

1. The first line in the body of every constructor
must be a call to another constructor
– If it is not then Java will insert a call to the

superclass default constructor
• If the superclass default constructor does not exist or is

private then a compilation error occurs

2. A call to another constructor can only occur
on the first line in the body of a constructor

3. The superclass constructor must be called
during construction of the derived class

19

Mix (version 1)
public final class Mix extends Dog
{ // no declaration of size or energy; inherited from Dog

private ArrayList<String> breeds;

public Mix ()
{ // call to a Dog constructor

super();
this.breeds = new ArrayList<String>();

}

public Mix(int size, int energy)
{ // call to a Dog constructor

super(size, energy);
this.breeds = new ArrayList<String>();

}

20

public Mix(int size, int energy, ArrayList<String> breeds)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

}

21

Mix (version 2)

public final class Mix extends Dog
{ // no declaration of size or energy; inherited from Dog

private ArrayList<String> breeds;

public Mix ()
{ // call to a Mix constructor

this(5, 5);
}

public Mix(int size, int energy)
{ // call to a Mix constructor

this(size, energy, new ArrayList<String>());
}

22

public Mix(int size, int energy, ArrayList<String> breeds)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

}

23

• Why is the constructor call to the superclass
needed?
– Because Mix is-a Dog and the Dog part of Mix

needs to be constructed

24

25

...KomondorBloodHound

PureBreed Mix

Dog

Object

26

Dog

- size : int

- energy : int

+ setSize()

+ setEnergy()

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

Mix

- breeds : ArrayList<String>

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

27

Mix object

Dog object

Object object

size 1

energy 10

breeds 1000

Mix mutt = new Mix(1, 10);

1. Mix constructor starts running
• Creates new Dog subobject by invoking

the Dog constructor
2. Dog constructor starts running
• creates new Object subobject

by (silently) invoking the
Object constructor

3. Object constructor runs
• sets size and energy

• Creates a new empty ArrayList and
assigns it to breeds

Invoking the Superclass Ctor

• Why is the constructor call to the superclass
needed?
– Because Mix is-a Dog and the Dog part of Mix

needs to be constructed
• Similarly, the Object part of Dog needs to be

constructed

28

Invoking the Superclass Ctor

• A derived class can only call its own constructors
or the constructors of its immediate superclass
– Mix can call Mix constructors or Dog constructors

– Mix cannot call the Object constructor
• Object is not the immediate superclass of Mix

– Mix cannot call PureBreed constructors
• Cannot call constructors across the inheritance hierarchy

– PureBreed cannot call Komondor constructors
• Cannot call subclass constructors

29

Constructors & Overridable Methods

• If a class is intended to be extended then its
constructor must not call an overridable method
– Java does not enforce this guideline

• Why?
– Recall that a derived class object has inside of it an object

of the superclass
– The superclass object is always constructed first, then the

subclass constructor completes construction of the
subclass object

– The superclass constructor will call the overridden version
of the method (the subclass version) even though the
subclass object has not yet been constructed

30

Superclass Ctor & Overridable Method

public class SuperDuper
{
public SuperDuper()
{

// call to an over-ridable method; bad
this.overrideMe();

}

public void overrideMe()
{

System.out.println("SuperDuper overrideMe");
}

}

31

Subclass Overrides Method
public class SubbyDubby extends SuperDuper {

private final Date date;

public SubbyDubby()
{ super(); this.date = new Date(); }

@Override public void overrideMe()
{ System.out.print("SubbyDubby overrideMe : ");

System.out.println(this.date); }

public static void main(String[] args)
{ SubbyDubby sub = new SubbyDubby();

sub.overrideMe(); }
}

32

• The programmer's intent was probably to have
the program print:

SuperDuper overrideMe
SubbyDubby overrideMe : <the date>

or, if the call to the overridden method was intentional
SubbyDubby overrideMe : <the date>
SubbyDubby overrideMe : <the date>

• But the program prints:
SubbyDubby overrideMe : null
SubbyDubby overrideMe : <the date>

33

final attribute in
two different states!

What's Going On?
1. new SubbyDubby() calls the SubbyDubby constructor

2. The SubbyDubby constructor calls the SuperDuper
constructor

3. The SuperDuper constructor calls the method
overrideMe which is overridden by SubbyDubby

4. The SubbyDubby version of overrideMe prints the
SubbyDubby date attribute which has not yet been
assigned to by the SubbyDubby constructor (so date is
null)

5. The SubbyDubby constructor assigns date
6. SubbyDubby overrideMe is called by the client

34

• Remember to make sure that your base class
constructors only call final methods or
private methods
– If a base class constructor calls an overridden

method, the method will run in an unconstructed
derived class

35

Other Methods

• Methods in a subclass will often need or want to
call methods in the immediate superclass
– A new method in the subclass can call any public or
protected method in the superclass without using
any special syntax

• A subclass can override a public or
protected method in the superclass by
declaring a method that has the same signature
as the one in the superclass
– A subclass method that overrides a superclass method

can call the overridden superclass method using the
super keyword

36

Dog equals

• We will assume that two Dogs are equal if
their size and energy are the same

@Override public boolean equals(Object obj)
{
boolean eq = false;
if(obj != null && this.getClass() == obj.getClass())
{
Dog other = (Dog) obj;
eq = this.getSize() == other.getSize() &&

this.getEnergy() == other.getEnergy();
}
return eq;

}

37

Mix equals (version 1)

• Two Mix instances are equal if their Dog
subobjects are equal and they have the same
breeds

@Override public boolean equals(Object obj)
{ // the hard way
boolean eq = false;
if(obj != null && this.getClass() == obj.getClass()) {

Mix other = (Mix) obj;
eq = this.getSize() == other.getSize() &&

this.getEnergy() == other.getEnergy() &&
this.breeds.size() == other.breeds.size() &&
this.breeds.containsAll(other.breeds);

}
return eq;

}

38

subclass can call
public method of
the superclass

Mix equals (version 2)

• Two Mix instances are equal if their Dog
subobjects are equal and they have the same
breeds
– Dog equals already tests if two Dog instances are

equal
– Mix equals can call Dog equals to test if the Dog

subobjects are equal, and then test if the breeds are
equal

• Also notice that Dog equals already checks that
the Object argument is not null and that the
classes are the same
– Mix equals does not have to do these checks again

39

@Override public boolean equals(Object obj)
{
boolean eq = false;
if(super.equals(obj))
{ // the Dog subobjects are equal

Mix other = (Mix) obj;
eq = this.breeds.size() == other.breeds.size() &&

this.breeds.containsAll(other.breeds);
}
return eq;

}

40

subclass method that overrides a
superclass method can call the
overridden superclass method

Dog toString

@Override public String toString()

{

String s = "size " + this.getSize() +

"energy " + this.getEnergy();

return s;

}

41

Mix toString

@Override public String toString()
{
StringBuffer b = new StringBuffer();
b.append(super.toString());
for(String s : this.breeds)
{ b.append(" " + s); }
b.append(" mix");
return b.toString();

}

42

Dog hashCode

// similar to code generated by Eclipse
@Override public int hashCode()
{
final int prime = 31;
int result = 1;
result = prime * result + this.getEnergy();
result = prime * result + this.getSize();
return result;

}

43

Mix hashCode

// similar to code generated by Eclipse
@Override public int hashCode()
{
final int prime = 31;
int result = super.hashCode();
result = prime * result + this.breeds.hashCode();
return result;

}

44

Mix Memory Diagram

45

500 Mix object

size 5

energy 5

breeds 1750

•inherited from superclass
•private in superclass
•not accessible by name to Mix

Mix UML Diagram

46

Dog

Mix

1

ArrayList<String>

breeds

