
Aggregation and Composition

1

Based on slides by Prof. Burton Ma

Aggregation and Composition

• The terms aggregation and composition are

used to describe a relationship between
objects

• Both terms describe the has-a relationship
• The university has-a collection of departments
• Each department has-a collection of professors

2

Aggregation and Composition

• Composition implies ownership

• If the university disappears then all of its departments
disappear

• A university is a composition of departments

• Aggregation does not imply ownership

• If a department disappears then the professors do not
disappear

• A department is an aggregation of professors

3

Aggregation

• Suppose a Person has a name and a date of birth

public class Person {
 private String name;
 private Date birthDate;

 public Person(String name, Date birthDate) {
 this.name = name;
 this.birthDate = birthDate;
 }

 public Date getBirthDate() {
 return birthDate;
 }
}

4

• The Person example uses aggregation
– Notice that the constructor does not make a copy

of the name and birth date objects passed to it
– The name and birth date objects are shared with

the client
– Both the client and the Person instance are holding

references to the same name and birth date

5

// client code somewhere
String s = "Billy Bob";
Date d = new Date(91, 2, 26); // March 26, 1991
Person p = new Person(s, d);

6

64 client

s 250

d 350

p 450

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250

birthDate 350

• What happens when the client modifies the Date
instance?

– Prints Fri Nov 03 00:00:00 EST 1995

7

// client code somewhere
String s = "Billy Bob";
Date d = new Date(90, 2, 26); // March 26, 1990
Person p = new Person(s, d);

d.setYear(95); // November 3, 1995
d.setMonth(10);
d.setDate(3);
System.out.println(p.getBirthDate());

• Because the Date instance is shared by the

client and the Person instance:
– The client can modify the date using d and the
Person instance p sees a modified birthDate

– The Person instance p can modify the date using
birthDate and the client sees a modified date d

8

• Note that even though the String instance is

shared by the client and the Person instance p,
neither the client nor p can modify the String
– Immutable objects make great building blocks for

other objects
– They can be shared freely without worrying about

their state

9

UML Class Diagram for Aggregation

10

Person String Date

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

Another Aggregation Example

• 3D videogames use models that are a three-
dimensional representations of geometric data
– The models may be represented by:

• Three-dimensional points (particle systems)
• Simple polygons (triangles, quadrilaterals)
• Smooth, continuous surfaces (splines, parametric surfaces)
• An algorithm (procedural models)

• Rendering the objects to the screen usually
results in drawing triangles
– Graphics cards have specialized hardware that does

this very fast

11

12

13

Aggregation Example

• A Triangle has 3 three-dimensional Points

14

Triangle Point
3

Triangle

+ Triangle(Point, Point, Point)

+ getA() : Point

+ getB() : Point

+ getC() : Point

+ setA(Point) : void

+ setB(Point) : void

+ setC(Point) : void

Point

+ Point(double, double, double)

+ getX() : double

+ getY() : double

+ getZ() : double

+ setX(double) : void

+ setY(double) : void

+ setZ(double) : void

Triangle
// attributes and constructor

public class Triangle {

 private Point pA;
 private Point pB;
 private Point pC;

 public Triangle(Point c, Point b, Point c) {
 this.pA = a;
 this.pB = b;
 this.pC = c;
 }

15

Triangle
 // accessors

 public Point getA() {
 return this.pA;
 }

 public Point getB() {
 return this.pB;
 }

 public Point getC() {
 return this.pC;
 }

16

Triangle
 // mutators

 public void setA(Point p) {
 this.pA = p;
 }

 public void setB(Point p) {
 this.pB = p;
 }

 public void setC(Point p) {
 this.pC = p;
 }
}

17

Triangle Aggregation

• Implementing Triangle is very easy
• Attributes (3 Point references)

– Are references to existing objects provided by the
client

• Accessors
– Give clients a reference to the aggregated Points

• Mutators
– Set attributes to existing Points provided by the

client
• We say that the Triangle attributes are aliases

18

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);

19

20

64 client

a 250

b 350

c 450

tri 550

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);
 Point d = tri.getA();
 boolean sameObj = a == d;

21

client asks the triangle for one
of the triangle points and
checks if the point is the same
object that was used to create
the triangle

22

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);
 Point d = tri.getA();
 boolean sameObj = a == d;
 tri.setC(d);

23

client asks the triangle to set
one point of the triangle to d

24

64 client

a 250

b 350

c 250

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);
 Point b = new Point(0.0, 1.0, -3.0);
 Point c = new Point(2.0, 0.0, -3.0);
 Triangle tri = new Triangle(a, b, c);
 Point d = tri.getA();
 boolean sameObj = a == d;
 tri.setC(d);
 b.setX(0.5);
 b.setY(6.0);
 b.setZ(2.0);

25

client changes the coordinates of
one of the points (without asking
the triangle for the point first)

26

64 client

a 250

b 350

c 250

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.5

y 6.0

z 2.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

Triangle Aggregation

• If a client gets a reference to one of the
triangle's points, then the client can change
the position of the point without asking the
triangle

27

Composition

• Recall that an object of type X that is
composed of an object of type Y means
– X has-a Y object and
– X owns the Y object

• In other words

28

The X object, and only the X object, is responsible for its Y object

Composition

• This means that the X object will generally not
share references to its Y object with clients
– Constructors will create new Y objects
– Accessors will return references to new Y objects
– Mutators will store references to new Y objects

• The “new Y objects” are called defensive copies

29

The X object, and only the X object, is responsible for its Y object

Composition & the Default Constructor

• If a default constructor is defined it must
create a suitable Y object

 public X()
 {
 // create a suitable Y; for example
 this.y = new Y(/* suitable arguments */);
 }

30

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition & Copy Constructor

• If a copy constructor is defined it must create a
new Y that is a deep copy of the other X
object’s Y object

 public X(X other)
 {
 // create a new Y that is a copy of other.y
 this.y = new Y(other.getY());
 }

31

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition & Copy Constructor

• What happens if the X copy constructor does not
make a deep copy of the other X object’s Y
object?

 // don’t do this
 public X(X other)
 {
 this.y = other.y;
 }

– Every X object created with the copy constructor ends
up sharing its Y object

• If one X modifies its Y object, all X objects will end up with a
modified Y object

• What is this an example of?

32

Composition & Other Constructors

• a constructor that has a Y parameter must first
deep copy and then validate the Y object

 public X(Y y)
 {
 // create a copy of y
 Y copyY = new Y(y);
 // validate; will throw an exception if copyY is

invalid
 this.checkY(copyY);
 this.y = copyY;
 }

33

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Other Constructors

• Why is the deep copy required?

– If the constructor does this

 // don’t do this for composition
 public X(Y y) {
 this.y = y;
 }

 then the client and the X object will share the same Y
object

• This is called a privacy leak

34

the X object, and only the X object, is responsible for its Y object

Composition and Accessors

• Never return a reference to an attribute;
always return a deep copy

 public Y getY()
 {
 return new Y(this.y);
 }

35

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Accessors

• Why is the deep copy required?

– If the accessor does this

 // don’t do this for composition
 public Y getY() {
 return this.y;
 }

 then the client and the X object will share the same Y
object

• This is called a privacy leak

36

the X object, and only the X object, is responsible for its Y object

Composition and Mutators

• If X has a method that sets its Y object to a client-
provided Y object then the method must make a
deep copy of the client-provided Y object and
validate it

 public void setY(Y y)
 {
 Y copyY = new Y(y);
 // validate; will throw an exception if copyY is invalid
 this.checkY(copyY);
 this.y = copyY;
 }

37

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Mutators

• Why is the deep copy required?

– If the mutator does this

 // don’t do this for composition
 public void setY(Y y) {
 this.y = y;
 }

 then the client and the X object will share the same Y
object

• This is called a privacy leak

38

the X object, and only the X object, is responsible for its Y object

Period Class

• Adapted from Effective Java by Joshua Bloch
– Available online at

http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

• We want to implement a class that represents

a period of time
– A period has a start time and an end time

• End time is always after the start time

39

http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

Period Class
• We want to implement a class that represents a

period of time
– Has-a: Date representing the start of the time period
– Has-a: Date representing the end of the time period
– Class invariant: start of time period is always prior to

the end of the time period

• Class invariant
– Some property of the state of the object that is

established by a constructor and maintained between
calls to public methods

40

Period Class

41

Period Date
2

Period is a compostion
of two Date objects

42

public final class Period {
 private Date start;
 private Date end;

 /**
 * @param start beginning of the period.
 * @param end end of the period; must not precede start.
 * @throws IllegalArgumentException if start is after end.
 * @throws NullPointerException if start or end is null
 */
 public Period(Date start, Date end) {
 if (start.compareTo(end) > 0) {
 throw new IllegalArgumentException("start after end");
 }
 this.start = new Date(start.getTime());
 this.end = new Date(end.getTime());
 }

Collections as Attributes

• Often you will want to implement a class that
has-a collection as an attribute
– A university has-a collection of faculties and each

faculty has-a collection of schools and
departments

– A molecule has-a collection of atoms
– A person has-a collection of acquaintances
– From the notes, a student has-a collection of GPAs

and has-a collection of courses
– A polygonal model has-a collection of triangles

43

What Does a Collection Hold?

• A collection holds references to instances
– It does not hold the instances

44

ArrayList<Date> dates =
 new ArrayList<Date>();

Date d1 = new Date();
Date d2 = new Date();
Date d3 = new Date();

dates.add(d1);
dates.add(d2);
dates.add(d3);

100 client invocation

dates 200

d1 500

d2 600

d3 700

...

200 ArrayList object

500

600

700

Student Class (from notes)
• A Student has-a string id
• A Student has-a collection of yearly GPAs
• A Student has-a collection of courses

45

Student Set<Course> List<Double>
1 1

Double Course String

1 4 *

gpas courses

id

PolygonalModel Class

• A polygonal model has-a List of Triangles
– Aggregation

• Implements Iterable<Triangle>
– Allows clients to access each Triangle sequentially

• Class invariant
– List never null

46

PolygonalModel List<Triangle>
1

Triangle

*

tri

PolygonalModel
class PolygonalModel implements Iterable<Triangle>
{
 private List<Triangle> tri;

 public PolygonalModel()
 {
 tri = new ArrayList<Triangle>();
 }

 public Iterator<Triangle> iterator()
 {
 return this.tri.iterator();
 }

47

PolygonalModel
 public void clear()
 {
 // removes all Triangles
 this.tri.clear();
 }

 public int size()
 {
 // returns the number of Triangles
 return this.tri.size();
 }

48

Collections as Attributes

• When using a collection as an attribute of a
class X you need to decide on ownership
issues
– Does X own or share its collection?
– If X owns the collection, does X own the objects

held in the collection?

49

X Shares its Collection with other Xs

• If X shares its collection with other X
instances, then the copy constructor does not
need to create a new collection
– The copy constructor can simply assign its

collection
– [notes 4.3.3] refer to this as aliasing

50

PolygonalModel Copy Constructor 1

 public PolygonalModel(PolygonalModel p)

 {
 // implements aliasing (sharing) with other
 // PolygonalModel instances
 this.setTriangles(p.getTriangles());
 }

 private List<Triangle> getTriangles()
 { return this.tri; }

 private void setTriangles(List<Triangle> tri)
 { this.tri = tri; }

51

alias: no new List
created

X Owns its Collection: Shallow Copy

• If X owns its collection but not the objects in
the collection then the copy constructor can
perform a shallow copy of the collection

• A shallow copy of a collection means
– X creates a new collection
– The references in the collection are aliases for

references in the other collection

52

X Owns its Collection: Shallow Copy

• The hard way to perform a shallow copy

53

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>();
for(Date d : dates)
{
 sCopy.add(d);
}

shallow copy: new List
created but elements
are all aliases

add does not create
new objects

X Owns its Collection: Shallow Copy

• The easy way to perform a shallow copy

54

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>(dates);

X Owns its Collection: Deep Copy

• If X owns its collection and the objects in the
collection then the copy constructor must
perform a deep copy of the collection

• A deep copy of a collection means
– X creates a new collection
– The references in the collection are references to

new objects (that are copies of the objects in
other collection)

55

X Owns its Collection: Deep Copy

• How to perform a deep copy

56

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>();
for(Date d : dates)
{
 sCopy.add(new Date(d.getTime());
}

deep copy: new List
created and new
elements created

constructor invocation
creates a new object

