
Creating an Immutable Class

1

Based on slides by Prof. Burton Ma

Value Type Classes

A value type is a class that represents a value
 Examples of values: name, date, colour,

mathematical vector
 Java examples: String, Date, Integer, List

2

Immutable Classes

 A class defines an immutable type if an instance
of the class cannot be modified after it is created
 Each instance has its own constant state
 More precisely, the externally visible state of each object

appears to be constant
 Java examples: String, Integer (and all of the other

primitive wrapper classes)
 Advantages of immutability versus mutability
 Easier to design, implement, and use
 Can never be put into an inconsistent state after

creation

3

Designing a Simple Immutable Class

 PhoneNumber API

4

PhoneNumber

- areaCode : short
- exchangeCode : short
- stationCode : short

+ PhoneNumber(int, int, int)
+ equals(Object) : boolean
+ getAreaCode() : short
+ getExchangeCode() : short
+ getStationCode() : short
+ toString() : String

Recipe for Immutability 1

1.Do not provide any methods that can alter the
state of the object
 Methods that modify state are called mutators
 Java example of a mutator:

5

import java.util.Calendar;

public class CalendarClient {
 public static void main(String[] args)
 {
 Calendar now = Calendar.getInstance();
 // set hour to 5am
 now.set(Calendar.HOUR_OF_DAY, 5);
 }
}

Recipe for Immutability 2

2.Prevent the class from being extended.
 Note that all classes extend java.lang.Object
 One way to do this is to mark the class as final

public final class PhoneNumber
{
 // version 0
}

 A final class cannot be extended
 Don't confuse final variable and final classes

 The reason for this step will become clear in a couple
of weeks

6

Recipe for Immutability 3
3.Make all attributes final
 Recall that Java will not allow a final attribute to

be assigned to more than once
 final attributes make your intent clear that the

class is immutable

public final class PhoneNumber
{ // version 1
 private final short areaCode;
 private final short exchangeCode;
 private final short stationCode;
}

 Notice that the attributes are not initialized here
 That task belongs to the class constructors

7

Recipe for Immutability 4

4.Make all attributes private
 This applies to all public classes (including mutable

classes)
 In public classes, strongly prefer private attributes
 Avoid using public attributes

 private attributes support encapsulation
 Because they are not part of the API, you can change

them (even remove them) without affecting any clients
 The class controls what happens to private attributes
It can prevent the attributes from being modified to an

inconsistent state

8

Recipe for Immutability 5

5.Prevent clients from obtaining a reference to
any mutable attributes

 Recall that final attributes have constant state

only if the type of the attribute is a primitive or is
immutable

 If you allow a client to get a reference to a
mutable attribute, the client can change the state
of the attribute, and hence, the state of your
immutable class

9

this

Every non-static method of a class has an
implicit parameter called this
Recall that a non-static method requires an

object to call the method

 10

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
short areaCode = num.getAreaCode(); // get the
 // area code that
 // belongs to num

How does the method getAreaCode() get the
area code for the correct instance?
 this is a reference to the calling object

 public final class PhoneNumber
 { // version 2; see version 1 for attributes

 public short getAreaCode()
 { return this.areaCode; }

 public short getExchangeCode()
 { return this.exchangeCode; }

 public short getStationCode()
 { return this.stationCode; }
 }

11

toString()
 Recall that every class extends java.lang.Object
 Object defines a method toString() that returns a
String representation of the calling object
 We can call toString() with our current PhoneNumber

class

 This prints something like
phonenumber.PhoneNumber@19821f

12

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
System.out.println(num.toString());

 toString() should return a concise but
informative representation that is easy for a
person to read
 It is recommended that all subclasses override

this method
 This means that any non-utility class you write

should redefine the toString() method
 In this case, our new toString() method has the same

declaration as toString() in java.lang.Object

13

 It is easy to override toString() for our class

public final class PhoneNumber
{ // version 3; see versions 1 and 2 for attributes and methods

 @Override public String toString()
 {
 return String.format("(%1$03d) %2$03d-%3$04d",
 this.areaCode,
 this.exchangeCode,
 this.stationCode);
 }
}

14

Constructors

 Constructors are responsible for initializing instances of a class
 A constructor declaration looks a little bit like a method

declaration:
 The name of a constructor is the same as the class name
 A constructor may have an access modifier (but no other modifiers)

 Every constructor has an implicit this parameter
 A constructor will often need to validate its arguments
 Because you generally should avoid creating objects with invalid state

15

[notes 2.2.3], [AJ 4.4]

No Parameter Validation
public final class PhoneNumber
{ // version 4; see versions 1, 2, and 3 for attributes and methods

 private final short areaCode;
 private final short exchangeCode;
 private final short stationCode;

 public PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode)
 {
 this.areaCode = (short) areaCode;
 this.exchangeCode = (short) exchangeCode;
 this.stationCode = (short) stationCode;
 }

16

parameter names
shadow attribute

names

With Parameter Validation
public final class PhoneNumber
{ // version 4; see versions 1, 2, and 3 for attributes and methods

 public PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode)
 {
 rangeCheck(areaCode, 999, "area code");
 rangeCheck(exchangeCode, 999, "exchange code");
 rangeCheck(stationCode, 9999, "station code");
 this.areaCode = (short) areaCode;
 this.exchangeCode = (short) exchangeCode;
 this.stationCode = (short) stationCode;
 }

17

parameter names
shadow attribute

names

 private static void rangeCheck(int num,
 int max,
 String name)
 {
 if (num < 0 || num > max)
 {
 throw
 new IllegalArgumentException(name + " : " + num);
 }
 }

}

18

Constructor Overloading

Note that you can overload constructors

19

// in PhoneNumber class; exercises for the student

public PhoneNumber(String areaCode,
 String exchangeCode,
 String stationCode)
{

}

public PhoneNumber(String phoneNum)
{
 // assume phoneNum looks like (ABC) XYZ-IJKL
}

Overriding equals()

 Suppose you write a value class that extends
Object but you do not override equals()
 What happens when a client tries to use equals()?
 Object.equals() is called

20

// PhoneNumber client

PhoneNumber cse = new PhoneNumber(416, 736, 5053);
System.out.println(cse.equals(cse)); // true

PhoneNumber cseToo = cse;
System.out.println(cseToo.equals(cse)); // true

PhoneNumber cseAlso = new PhoneNumber(416, 736, 5053);
System.out.println(cseAlso.equals(cse)); // false!

[notes 2.2.4], [AJ p 450-455]

21

64 client
cse

cseToo

cseAlso

600 PhoneNumber
object

areaCode 416

exchangeCode 736

stationCode 5053

700 PhoneNumber
object

areaCode 416

exchangeCode 736

stationCode 5053

600

600

700

Object.equals()

 Implements an identity check
 An instance is equal only to itself
 x.equals(y) is true if and only if x and y are

references to the same object
Most value classes should support logical

equality
 An instance is equal to another instance if their

states are equal
 e.g. two PhoneNumbers are equal if their area,

exchange, and station codes have the same values

22

23

• Implementing equals() is surprisingly hard
– "One would expect that overriding equals(), since it is a

fairly common task, should be a piece of cake. The reality is far
from that. There is an amazing amount of disagreement in the
Java community regarding correct implementation of
equals()."

– Angelika Langer, Secrets of equals() – Part 1
– http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.htm

l

• What we are about to do does not always
produce the result you might be looking for

• But it is always satisfies the equals() contract and
it's what the notes and textbook do

http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html
http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

An Instance is Equal to Itself

 x.equals(x) should always be true
Also, x.equals(y) should always be true if x

and y are references to the same object
You can check if two references are equal using
==

24

PhoneNumber.equals(): Part 1
// inside class PhoneNumber

@Override public boolean equals(Object obj)
{
 boolean eq = true;
 if (this == obj) eq = true;

 return eq;
}

25

An Instance is Never Equal to null

 Java requires that x.equals(null) returns
false
You must not throw an exception if the

argument is null
 So it looks like we have to check for a null

argument...

26

PhoneNumber.equals(): Part 2

@Override public boolean equals(Object obj)
{

 boolean eq = true;

 if (this == obj) eq = true;

 else if (obj == null) eq = false;

 return eq;
}

27

Instances of the Same Type can be
Equal

The implementation of equals() used in the
notes and the textbook is based on the rule
that an instance can only be equal to another
instance of the same type
At first glance, this sounds reasonable and is

easy to implement using Object.getClass()

public final Class<? extends Object> getClass()

 Returns the runtime class of an object.

28

PhoneNumber.equals(): Part 3

@Override public boolean equals(Object obj)
{

 boolean eq = true;

 if (this == obj) eq = true;

 else if (obj == null) eq = false;

 else if (this.getClass() != obj.getClass()) eq = false;

 return eq;
}

29

Instances with Same State are Equal

 Recall that the value of the attributes of an object
define the state of the object
 Two instances are equal if all of their attributes are equal

 Recipe for checking equality of attributes
1. If the attribute type is a primitive type other than float or

double use ==
2. If the attribute type is float use Float.compare()
3. If the attribute type is double use Double.compare()
4. If the attribute is an array consider Arrays.equals()
5. If the attribute is a reference type use equals(), but

beware of attributes that might be null

30

PhoneNumber.equals(): Part 4
@Override public boolean equals(Object obj)
{

 boolean eq = true;

 if (this == obj) eq = true;

 else if (obj == null) eq = false;

 else if (this.getClass() != obj.getClass()) eq = false;

 else
 {
 PhoneNumber other = (PhoneNumber) obj;
 eq = (this.areaCode == other.areaCode &&
 this.exchangeCode == other.exchangeCode &&
 this.stationCode == other.stationCode);
 }
 return eq;
}

31

The equals() Contract Part 1

 For reference values equals() is
1. Reflexive :
 An object is equal to itself
 x.equals(x) is true

2. Symmetric :
 Two objects must agree on whether they are equal
 x.equals(y) is true if and only if y.equals(x) is true

3. Transitive :
 If a first object is equal to a second, and the second object is equal

to a third, then the first object must be equal to the third
 If x.equals(y) is true, and y.equals(z) is true, then

x.equals(z) must be true

32

The equals() Contract Part 2

4. Consistent :
 Repeatedly comparing two objects yields the same

result (assuming the state of the objects does not
change)

5. x.equals(null) is always false

33

