
Creating an Immutable Class

1

Based on slides by Prof. Burton Ma

Value Type Classes

A value type is a class that represents a value
 Examples of values: name, date, colour,

mathematical vector
 Java examples: String, Date, Integer, List

2

Immutable Classes

 A class defines an immutable type if an instance
of the class cannot be modified after it is created
 Each instance has its own constant state
 More precisely, the externally visible state of each object

appears to be constant
 Java examples: String, Integer (and all of the other

primitive wrapper classes)
 Advantages of immutability versus mutability
 Easier to design, implement, and use
 Can never be put into an inconsistent state after

creation

3

Designing a Simple Immutable Class

 PhoneNumber API

4

PhoneNumber

- areaCode : short
- exchangeCode : short
- stationCode : short

+ PhoneNumber(int, int, int)
+ equals(Object) : boolean
+ getAreaCode() : short
+ getExchangeCode() : short
+ getStationCode() : short
+ toString() : String

Recipe for Immutability 1

1.Do not provide any methods that can alter the
state of the object
 Methods that modify state are called mutators
 Java example of a mutator:

5

import java.util.Calendar;

public class CalendarClient {
 public static void main(String[] args)
 {
 Calendar now = Calendar.getInstance();
 // set hour to 5am
 now.set(Calendar.HOUR_OF_DAY, 5);
 }
}

Recipe for Immutability 2

2.Prevent the class from being extended.
 Note that all classes extend java.lang.Object
 One way to do this is to mark the class as final

public final class PhoneNumber
{
 // version 0
}

 A final class cannot be extended
 Don't confuse final variable and final classes

 The reason for this step will become clear in a couple
of weeks

6

Recipe for Immutability 3
3.Make all attributes final
 Recall that Java will not allow a final attribute to

be assigned to more than once
 final attributes make your intent clear that the

class is immutable

public final class PhoneNumber
{ // version 1
 private final short areaCode;
 private final short exchangeCode;
 private final short stationCode;
}

 Notice that the attributes are not initialized here
 That task belongs to the class constructors

7

Recipe for Immutability 4

4.Make all attributes private
 This applies to all public classes (including mutable

classes)
 In public classes, strongly prefer private attributes
 Avoid using public attributes

 private attributes support encapsulation
 Because they are not part of the API, you can change

them (even remove them) without affecting any clients
 The class controls what happens to private attributes
It can prevent the attributes from being modified to an

inconsistent state

8

Recipe for Immutability 5

5.Prevent clients from obtaining a reference to
any mutable attributes

 Recall that final attributes have constant state

only if the type of the attribute is a primitive or is
immutable

 If you allow a client to get a reference to a
mutable attribute, the client can change the state
of the attribute, and hence, the state of your
immutable class

9

this

Every non-static method of a class has an
implicit parameter called this
Recall that a non-static method requires an

object to call the method

 10

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
short areaCode = num.getAreaCode(); // get the
 // area code that
 // belongs to num

How does the method getAreaCode() get the
area code for the correct instance?
 this is a reference to the calling object

 public final class PhoneNumber
 { // version 2; see version 1 for attributes

 public short getAreaCode()
 { return this.areaCode; }

 public short getExchangeCode()
 { return this.exchangeCode; }

 public short getStationCode()
 { return this.stationCode; }
 }

11

toString()
 Recall that every class extends java.lang.Object
 Object defines a method toString() that returns a
String representation of the calling object
 We can call toString() with our current PhoneNumber

class

 This prints something like
phonenumber.PhoneNumber@19821f

12

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
System.out.println(num.toString());

 toString() should return a concise but
informative representation that is easy for a
person to read
 It is recommended that all subclasses override

this method
 This means that any non-utility class you write

should redefine the toString() method
 In this case, our new toString() method has the same

declaration as toString() in java.lang.Object

13

 It is easy to override toString() for our class

public final class PhoneNumber
{ // version 3; see versions 1 and 2 for attributes and methods

 @Override public String toString()
 {
 return String.format("(%1$03d) %2$03d-%3$04d",
 this.areaCode,
 this.exchangeCode,
 this.stationCode);
 }
}

14

Constructors

 Constructors are responsible for initializing instances of a class
 A constructor declaration looks a little bit like a method

declaration:
 The name of a constructor is the same as the class name
 A constructor may have an access modifier (but no other modifiers)

 Every constructor has an implicit this parameter
 A constructor will often need to validate its arguments
 Because you generally should avoid creating objects with invalid state

15

[notes 2.2.3], [AJ 4.4]

No Parameter Validation
public final class PhoneNumber
{ // version 4; see versions 1, 2, and 3 for attributes and methods

 private final short areaCode;
 private final short exchangeCode;
 private final short stationCode;

 public PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode)
 {
 this.areaCode = (short) areaCode;
 this.exchangeCode = (short) exchangeCode;
 this.stationCode = (short) stationCode;
 }

16

parameter names
shadow attribute

names

With Parameter Validation
public final class PhoneNumber
{ // version 4; see versions 1, 2, and 3 for attributes and methods

 public PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode)
 {
 rangeCheck(areaCode, 999, "area code");
 rangeCheck(exchangeCode, 999, "exchange code");
 rangeCheck(stationCode, 9999, "station code");
 this.areaCode = (short) areaCode;
 this.exchangeCode = (short) exchangeCode;
 this.stationCode = (short) stationCode;
 }

17

parameter names
shadow attribute

names

 private static void rangeCheck(int num,
 int max,
 String name)
 {
 if (num < 0 || num > max)
 {
 throw
 new IllegalArgumentException(name + " : " + num);
 }
 }

}

18

Constructor Overloading

Note that you can overload constructors

19

// in PhoneNumber class; exercises for the student

public PhoneNumber(String areaCode,
 String exchangeCode,
 String stationCode)
{

}

public PhoneNumber(String phoneNum)
{
 // assume phoneNum looks like (ABC) XYZ-IJKL
}

Overriding equals()

 Suppose you write a value class that extends
Object but you do not override equals()
 What happens when a client tries to use equals()?
 Object.equals() is called

20

// PhoneNumber client

PhoneNumber cse = new PhoneNumber(416, 736, 5053);
System.out.println(cse.equals(cse)); // true

PhoneNumber cseToo = cse;
System.out.println(cseToo.equals(cse)); // true

PhoneNumber cseAlso = new PhoneNumber(416, 736, 5053);
System.out.println(cseAlso.equals(cse)); // false!

[notes 2.2.4], [AJ p 450-455]

21

64 client
cse

cseToo

cseAlso

600 PhoneNumber
object

areaCode 416

exchangeCode 736

stationCode 5053

700 PhoneNumber
object

areaCode 416

exchangeCode 736

stationCode 5053

600

600

700

Object.equals()

 Implements an identity check
 An instance is equal only to itself
 x.equals(y) is true if and only if x and y are

references to the same object
Most value classes should support logical

equality
 An instance is equal to another instance if their

states are equal
 e.g. two PhoneNumbers are equal if their area,

exchange, and station codes have the same values

22

23

• Implementing equals() is surprisingly hard
– "One would expect that overriding equals(), since it is a

fairly common task, should be a piece of cake. The reality is far
from that. There is an amazing amount of disagreement in the
Java community regarding correct implementation of
equals()."

– Angelika Langer, Secrets of equals() – Part 1
– http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.htm

l

• What we are about to do does not always
produce the result you might be looking for

• But it is always satisfies the equals() contract and
it's what the notes and textbook do

http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html
http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

An Instance is Equal to Itself

 x.equals(x) should always be true
Also, x.equals(y) should always be true if x

and y are references to the same object
You can check if two references are equal using
==

24

PhoneNumber.equals(): Part 1
// inside class PhoneNumber

@Override public boolean equals(Object obj)
{
 boolean eq = true;
 if (this == obj) eq = true;

 return eq;
}

25

An Instance is Never Equal to null

 Java requires that x.equals(null) returns
false
You must not throw an exception if the

argument is null
 So it looks like we have to check for a null

argument...

26

PhoneNumber.equals(): Part 2

@Override public boolean equals(Object obj)
{

 boolean eq = true;

 if (this == obj) eq = true;

 else if (obj == null) eq = false;

 return eq;
}

27

Instances of the Same Type can be
Equal

The implementation of equals() used in the
notes and the textbook is based on the rule
that an instance can only be equal to another
instance of the same type
At first glance, this sounds reasonable and is

easy to implement using Object.getClass()

public final Class<? extends Object> getClass()

 Returns the runtime class of an object.

28

PhoneNumber.equals(): Part 3

@Override public boolean equals(Object obj)
{

 boolean eq = true;

 if (this == obj) eq = true;

 else if (obj == null) eq = false;

 else if (this.getClass() != obj.getClass()) eq = false;

 return eq;
}

29

Instances with Same State are Equal

 Recall that the value of the attributes of an object
define the state of the object
 Two instances are equal if all of their attributes are equal

 Recipe for checking equality of attributes
1. If the attribute type is a primitive type other than float or

double use ==
2. If the attribute type is float use Float.compare()
3. If the attribute type is double use Double.compare()
4. If the attribute is an array consider Arrays.equals()
5. If the attribute is a reference type use equals(), but

beware of attributes that might be null

30

PhoneNumber.equals(): Part 4
@Override public boolean equals(Object obj)
{

 boolean eq = true;

 if (this == obj) eq = true;

 else if (obj == null) eq = false;

 else if (this.getClass() != obj.getClass()) eq = false;

 else
 {
 PhoneNumber other = (PhoneNumber) obj;
 eq = (this.areaCode == other.areaCode &&
 this.exchangeCode == other.exchangeCode &&
 this.stationCode == other.stationCode);
 }
 return eq;
}

31

The equals() Contract Part 1

 For reference values equals() is
1. Reflexive :
 An object is equal to itself
 x.equals(x) is true

2. Symmetric :
 Two objects must agree on whether they are equal
 x.equals(y) is true if and only if y.equals(x) is true

3. Transitive :
 If a first object is equal to a second, and the second object is equal

to a third, then the first object must be equal to the third
 If x.equals(y) is true, and y.equals(z) is true, then

x.equals(z) must be true

32

The equals() Contract Part 2

4. Consistent :
 Repeatedly comparing two objects yields the same

result (assuming the state of the objects does not
change)

5. x.equals(null) is always false

33

