
1

Based on slides by Prof. Burton Ma

 You want to produce a software product that
is to be used in many different countries

 Many different systems of measurement; for
example
 Distance: metre/kilometre versus yard/mile
 Volume: teaspoon/tablespoon/cup versus

millilitre/litre
 Force: newton versus pound-force
 Currency: CAD versus USD versus EUR

2

 Errors in converting units can have
catastrophic consequences
 http://lamar.colostate.edu/~hillger/unit-mixups.html

3

http://lamar.colostate.edu/~hillger/unit-mixups.html

 A class is a model of a thing or concept

 In Java, a class is the blueprint for creating
objects
 Attributes
 The structure of an object; its components and the

information (data) contained by the object
 Methods
 The behaviour of an object; what an object can do

4

 To decide what attributes and methods a class
must provide, you need to understand the
problem you are trying to solve
 The attributes and methods you provide depends

entirely on the requirements of the problem

5

Person
appearance

voice
…

draw()
talk()

…

Person
age

photograph
…

compatibleWith(Person)
contact ()

…

video game person dating service person

class name

attributes

methods

 Design a class to convert between kilometres
and miles

 What attributes are needed?
 Number of kilometres per mile
 Note: the number of kilometres in a mile never

changes; it is genuinely a constant value
 Attributes that are constant have all uppercase names

6

DistanceUtility

KILOMETRES_PER_MILE : double

attribute type

public class DistanceUtility
{
 // attributes
 public static final
 double KILOMETRES_PER_MILE = 1.609344;
}

7

 An attribute is a member that holds data
 A constant attribute is usually declared by

specifying
1. modifiers

1. access modifier public
2. static modifier static
3. final modifier final

2. type double
3. name KILOMETRES_PER_MILE
4. value 1.609344

8

public static final
 double KILOMETRES_PER_MILE = 1.609344;

 Attribute names must be unique in a class
 The scope of an attribute is the entire class
 [JBA] and [notes] call public attributes fields

9

 A public attribute is visible to all clients

 public attributes break encapsulation
 A NothingToHide object has no control over the value

of x
 Clients can put a NothingToHide object into an

invalid state

10

public class NothingToHide {
 public int x; // always positive
}

// client of NothingToHide
NothingToHide h = new NothingToHide();
h.x = 100;

h.x = -500; // x not positive

 A public attribute makes a class brittle in the
face of change

 public attributes are hard to change
 They are part of the class API
 Changing access or type will break existing client

code

11

public class NothingToHide {
 private int x; // always positive
}

// existing client of NothingToHide
NothingToHide h = new NothingToHide();
h.x = 100; // no longer compiles

 Avoid public attributes in production code
 Except when you want to expose constant value types

12

 An attribute that is static is a per-class
member
 Only one copy of the attribute, and the attribute is

associated with the class
 Every object created from a class declaring a static

attribute shares the same copy of the attribute
 Textbook uses the term static variable
 Also commonly called class variable

13

 DistanceUtility u =
 new DistanceUtility();
 DistanceUtility v =
 new DistanceUtility();

14

64 client invocation

u

see [JBA 4.3.3] for another example

500 DistanceUtility class
KILOMETRES_PER_MILE 1.609344

1000 DistanceUtility object
???

1100 DistanceUtility object
???

v
1000

1100

belongs to class

no copy of
KILOMETRES_PER_MILE

 A client should access a public static
attribute without requiring an object
 Use the class name followed by a period followed by

the attribute name

15

// client of DistanceUtility
double kmPerMi = Distance.KILOMETRES_PER_MILE;

 It is legal, but considered bad form, to access
a public static attribute using an object

16

// client of DistanceUtility; avoid doing this
DistanceUtility u = new DistanceUtility();
double kmPerMi = u.KILOMETRES_PER_MILE;

 An attribute (or variable) that is final can
only be assigned to once
 public static final attributes are typically

assigned when they are declared

public static final double
 KILOMETRES_PER_MILE = 1.609344;

 public static final attributes are intended to be

constant values that are a meaningful part of the
abstraction provided by the class

17

 final attributes of primitive types are
constant

18

public class AlsoNothingToHide {
 public static final int x = 100;
}

// client of AlsoNothingToHide
AlsoNothingToHide.x = 88; // will not compile;
 // attribute is final and
 // previously assigned

 final attributes of immutable types are constant

 Also, String is immutable
 It has no methods to change its contents

19

public class StillNothingToHide {
 public static final String x = "peek-a-boo";
}

// client of StillNothingToHide
StillNothingToHide.x = "i-see-you";
 // will not compile;
 // attribute is final and
 // previously assigned

 Avoid using mutable types as public constants.

20

 final attributes of mutable types are not
logically constant; their state can be changed

21

public class LastNothingToHide {
 public static final ArrayList<Integer> x =
 new ArrayList<Integer>();
}

// client of LastNothingToHide
ArrayList<Integer> y = new ArrayList<Integer>();
LastNothingToHide.x = y; // will not compile;
 // attribute is final and
 // previously assigned

LastNothingToHide.x.add(10000);
 // works!

 Our DistanceUtility API does not expose a
constructor
 but

DistanceUtility u = new DistanceUtility();
 is legal

 If you do not define any constructors, Java will
generate a default no-argument constructor for you

22

 Our DistanceUtility API exposes only
static constants (and methods later on)
 Its state is constant

 There is no benefit in instantiating a
DistanceUtility object
 A client can access the constants (and methods)

without creating a DistanceUtility object

 double kmPerMi = DistanceUtility.KILOMETRES_PER_MILE;

 Can prevent instantiation by declaring a
private constructor

23

public class DistanceUtility
{
 // attributes
 public static final double KILOMETRES_PER_MILE = 1.609344;

 // constructors
 // suppress default ctor for non-instantiation
 private DistanceUtility()
 {}

}

 24

[notes 1.2.3]

public class DistanceUtility
{
 // attributes
 public static final double KILOMETRES_PER_MILE = 1.609344;

 // constructors
 // suppress default ctor for non-instantiation
 private DistanceUtility()
 {
 throw new AssertionError();
 }
}

25
[notes 1.2.3]

 private attributes, constructors, and
methods cannot be accessed by clients
 they are not part of the class API

 private attributes, constructors, and
methods are accessible only inside the scope
of the class

 A class with only private constructors
indicates to clients that they cannot use new
to create instances of the class

26

27

 In Java, a utility class is a class having only
static attributes and static methods

 Uses:
 Group related methods on primitive values or arrays
java.lang.Math or java.util.Arrays

 Group static methods for objects that implement an
interface
java.util.Collections
[notes 1.6.1–1.6.3]

 Group static methods on a final class
 More on this when we talk about inheritance

28

public class DistanceUtility
{
 public static final double KILOMETRES_PER_MILE = 1.609344;

 private DistanceUtility()
 {}

 // methods
 public static double kilometresToMiles(double km)
 {
 double result = km / KILOMETRES_PER_MILE;
 return result;
 }
}

29

public static double kilometresToMiles(double km)

 A method is a member that performs an action
 A method has a signature (name + number and

types of the parameters)

 kilometresToMiles(double)

 All method signatures in a class must be unique

name number and types of parameters

signature

30

public static double kilometresToMiles(double km)

 A method returns a typed value or void

 double

 Use return to indicate the value to be returned

 public static double kilometresToMiles(double km)
 {
 double result = km / KILOMETRES_PER_MILE;
 return result;
 }

31

 Sometimes called formal parameters
 For a method, the parameter names must be

unique
 The scope of a parameter is the body of the

method

32

 A method that is static is a per-class
member
 Client does not need an object to invoke the method
 Client uses the class name to access the method

 double miles = DistanceUtility.kilometresToMiles(100.0);

 static methods are also called class methods
 A static method can only use static attributes of

the class

[notes 1.2.4], [AJ 249-255]

33

 A client invokes a method by passing
arguments to the method
 The types of the arguments must be compatible with

the types of parameters in the method signature
 The values of the arguments must satisfy the

preconditions of the method contract [JBA 2.3.3]
double kilometres = 100.0;
double miles = 0.0;
miles = DistanceUtility.kilometresToMiles(kilometres);

arguments

84

kilometres 100.0

miles 0.0

34

 An invoked method runs in its own area of
memory that contains storage for its
parameters

 Each parameter is initialized with the value of
its corresponding argument

84

kilometres 100.0

miles 0.0

parameter km
gets the value of

argument
kilometres

miles =
DistanceUtility.kilometresToMiles(
kilometres);

public static double
 kilometresToMiles(double km)

550 DistanceUtility.
kilometresToMiles

km

result

100.0

35

 The method body runs and the return value is
computed

 The return value is then copied back to the
caller

550 DistanceUtility.
kilometresToMiles

km

result

100.0 value of
 result

gets copied
into

miles

62.1371...

84

kilometres 100.0

miles 0.0 62.1371...

miles =
DistanceUtility.kilometresToMiles(
kilometres);

public static double
 kilometresToMiles(double km)

36

 The argument kilometres and the parameter
km have the same value but they are distinct
variables
 When DistanceUtility.kilometresToMiles()

changes the value of km the value of kilometres
does not change

550 DistanceUtility.
kilometresToMiles

km

84

kilometres 100.0

miles 0.0

100.0 kilometres
does not
change

public static double
 kilometresToMiles(double km){
 km /= KILOMETRES_PER_MILE;
 return km;
}

62.137...

miles =
DistanceUtility.kilometresToMiles(
kilometres);

37

 Java uses pass-by-value for primitive and
reference types

 public class Doubler
 { // attributes and ctors not shown
 public static void twice(Rectangle x)
 {
 x.setWidth(2 * x.getWidth());
 x.setHeight(2 * x.getHeight());
 }
 }

[notes 1.3.1 and 1.3.2]

38

 r = new Rectangle(3,4);
 Doubler.twice(r);

64 client
r

500 Rectangle
object

width 3

height 4

600 Doubler.twice

x

500

500

value of r is a
reference to the

new
Rectangle object

parameter x
gets the value
of argument r
(a reference)

 6

 8

see also [AJ 5.2 (p 272-282)]

39

 Java uses pass-by-value for primitive and
reference types
 An argument of primitive type cannot be changed by

a method
 An argument of reference type can have its state

changed by a method

40

/**
 * The class <code>DistanceUtility</code> contains constants and
 * methods to convert between kilometres and miles.
 *
 * @author CSE1030Z
 */
public class DistanceUtility
{
 /**
 * The number of kilometres in a mile.
 */
 public static final double KILOMETRES_PER_MILE = 1.609344;

41

/**
 * Converts distances in kilometres to miles.
 *
 * @param km The distance to convert. If <code>km</code>
 * is negative then the returned distance is
 * also negative.
 * @return Distance in miles.
 */
public static double kilometresToMiles(double km)
{
 double result = km / KILOMETRES_PER_MILE;
 return result;
}

42

 Javadoc processes doc comments that
immediately precede a class, attribute,
constructor or method declaration
 Doc comments delimited by /** and */
 Doc comment written in HTML and made up of two

parts
1. A description
 First sentence of description gets copied to the summary

section
 Only one description block; can use <p> to create

separate paragraphs
2. Block tags
 Begin with @ (@param, @return, @exception)
 @pre. is non-standard (custom tag used in CSE1030)

43

 http://www.oracle.com/technetwork/java/javase/documentati
on/index-137868.html

 [notes 1.5.1, 1.5.2]

 Precede every exported class, interface,
constructor, method, and attribute with a doc
comment

 For methods the doc comment should
describe the contract between the method and
the client
 Preconditions ([notes 1.4], [JBA 2.3.3])
 Postconditions ([notes 1.4], [JBA 2.3.3])

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

44

 Suppose we want to provide a method to convert
many values stored in an array from kilometres to
miles
 We can provide another method called
kilometresToMiles() as long as the signature is different

 Providing multiple methods with the same name
but different signatures is called method
overloading

 The intent of overloading is to provide flexibility
in the types of arguments that a client can use

45

public class DistanceUtility
{
 // attributes and constructors; see Version 2 or 2a ...

 // methods
 public static double kilometresToMiles(double km)
 { // see version 3}

 public static double[] kilometresToMiles(double[] km)
 {
 double[] miles = new double[km.length];
 for(int i = 0; i < km.length; i++)
 {
 miles[i] = kilometresToMiles(km[i]); // good!
 }
 return miles;
 }
}

46

 As the author of a class, you have control over
how your method is implemented

 What you cannot control is the value of the
arguments that clients pass in

 A well written method will
1. Specify any requirements the client must meet with

the arguments it supplies → preconditions
2. Validate the state of any arguments without

preconditions and deal gracefully with invalid
arguments → validation

[notes 1.4 and 1.5]

47

 If a method specifies a precondition on one of
its parameters, then it is the client's
responsibility to make sure that the argument it
supplies satisfies the precondition
 If a precondition is not satisfied then the method can

do anything (such as throw an exception, return an
incorrect value, behave unpredictably, ...)

 For our method possible preconditions are:
 km must not be null
 km.length > 0
 Note that the second precondition is more restrictive than the first

48

/**
 * Converts distances in kilometres to miles for arrays.
 * If an element of the array argument is negative the
 * corresponding element of the returned array is also
 * negative.
 *
 * @param km The distances to convert.
 * @pre. <code>km.length > 0</code>
 * @return Distances in miles in an array with
 * <code>length == km.length</code>.
 */
public static double[] kilometresToMiles(double[] km)

49

 Alternatively, the class implementer can relax
preconditions on the arguments and validate
the arguments for correctness

 The implementer assumes the responsibility
for dealing with invalid arguments
 Must check, or validate, the arguments to confirm

that they are valid
 Invalid arguments must be accommodated in a way

that allows the method to satisfy its postconditions

 In our example, a possible return value for a
null array is a zero-length array
 [notes 1.4 and 1.5]

50

/**
 * Converts distances in kilometres to miles for arrays.
 * If an element of the array argument is negative the
 * corresponding element of the returned array is also
 * negative.
 *
 * @param km The distances to convert.
 * @return Distances in miles in an array with
 * <code>length == km.length</code>. If the
 * array argument is <code>null</code> then a
 * zero-length array is returned.
 */

[notes 1.4 and 1.5]

51

public static double[] kilometresToMiles(double[] km)
{
 double[] miles = null;
 if (km == null) {
 miles = new double[0];
 }
 else {
 miles = new double[km.length];
 for(int i = 0; i < km.length; i++) {
 miles[i] = kilometresToMiles(km[i]);
 }
 }
 return miles;
}

52

 Simple rule
 A class can define multiple methods with the same

name as long as the signatures are unique

// DistanceUtility examples
 kilometresToMiles(double)
 kilometresToMiles(double[])

 // String examples
 String()
 String(char[] value)
 String(char[] value, int offset, int count)

53

 Everything other than the signature is ignored
in determining a legal overload

// illegal; parameter names not part of signature
// add this to DistanceUtility: legal or illegal?
public static double kilometresToMiles(double kilos)

54

// illegal; access modifier not part of signature
// legal or illegal?
private static double kilometresToMiles(double km)

55

// illegal; static modifier not part of signature
// legal or illegal?
public double kilometresToMiles(double km)

56

// illegal; return type not part of signature
// legal or illegal?
public static float kilometresToMiles(double km)

57

// legal; parameter type is part of signature
// legal or illegal?
public static float kilometresToMiles(float km)
{
 // this works
 return (float)(km / KILOMETRES_PER_MILE);
}

58

// implemented in terms of kilometresToMiles(double)
//
public static float kilometresToMiles(float km)
{
 // but this might be better
 return (float) kilometresToMiles(km);
}

59

 Loosely speaking, the compiler will select the
method that most closely matches the number
and types of the arguments
 “The rules that determine which overloading is

selected are extremely complex. They take up
thirty-three pages in the language specification [JLS,
15.12.1-3], and few programmers understand all of
their subtleties.”

 Effective Java, Second Edition, p 195.

60

// from
java.lang.Math

Math.abs(-5);
Math.abs(-5f);
Math.abs(-5.0);

Math.max(1, 2);
Math.max(1.0, 2.0);
Math.max(1, 2.0);

// Math.abs(int a)

// Math.abs(float a)

// Math.abs(double a)

// Math.max(int a, int b)

// Math.max(double a, double b)

// Math.max(double a, double b)

no exact match for Math.max(int, double)
but the compiler can convert int to double
to match Math.max(double, double)

61

public class Ambiguous {
 public static void f(int a, double b) {
 System.out.println("f int double");
 }

 public static void f(double a, int b) {
 System.out.println("f double int");
 }

 public static void main(String[] args) {
 f(1, 2); // will not compile
 }
}

62

import java.util.*;

public class SetList
{
 public static void main(String[] args)
 {
 Set<Integer> set = new TreeSet<Integer>();
 List<Integer> list = new ArrayList<Integer>();
 // fill set and list with -3, -2, -1, 0, 1, 2
 for(int i = -3; i < 3; i++)
 {
 set.add(i); list.add(i);
 }
 System.out.println("before " + set + " " + list);

 [Effective Java, Second Edition, p 194]

63

 // remove 0, 1, and 2?
 for(int i = 0; i < 3; i++)
 {
 set.remove(i); list.remove(i);
 }
 System.out.println("after " + set + " " + list);
 }
}

[Effective Java, Second Edition, p 194]

64

before [-3, -2, -1, 0, 1, 2] [-3, -2, -1, 0, 1, 2]
after [-3, -2, -1] [-2, 0, 2]

 set and list are collections of Integer
 Calls to add autobox their int argument

 set.add(i); // autobox int i to get Integer
 list.add(i); // autobox int i to get Integer

 Calls to TreeSet remove also autobox their int
argument

set.remove(i); // autobox int i to get Integer

65

 However, ArrayList has an overloaded remove method

 remove(int index)

 Removes the element at the specified position in this list.

 Therefore, list.remove(i) matches the int version of
remove() instead of the Integer version of remove()

 list.remove(0); // [-3, -2, -1, 0, 1, 2]
 list.remove(1); // [-2, -1, 0, 1, 2]
 list.remove(2); // [-2, 0, 1, 2]

66

 Class name preceded by << utility >>
 + means public (– means private)
 Attributes: type
 Methods: parameters and return type

<< utility >>
DistanceUtility

+ KILOMETRES_PER_MILE : double

+ kilometresToMiles(double) : double
+ kilometresToMiles(double[]) : double[]
+ milesToKilometres(double) : double

