
Creating a Mutable Class

1

Based on slides by Prof. Burton Ma

Mutable Classes

A mutable class can change how its state
appears to clients
 Recall that immutable classes are generally easier

to implement and use
 So why would we want a mutable class?
 Because you need a separate immutable object for every

value you need to represent
 Example is String concatenation

2

Reading a Text File into a String

BufferedReader in =
 new BufferedReader(new FileReader(file));
String contents = "";
while (in.ready()) {
 contents = contents + in.readLine();
}

3

creates a new String object
to perform the concatenation
each iteration of the loop

Reading a Text File into a StringBuilder

BufferedReader in =
 new BufferedReader(new FileReader(file));
StringBuilder contents = new StringBuilder();
while (in.ready()) {
 contents.append(in.readLine());
}

4

new String not created
for each iteration

Example Mutable class

• Create a class to represent 2-dimensional

vectors

5

What Can Mathematical Vectors Do?

 add
 subtract
 multiply by scalar
 set coordinates
 get coordinates
 construct
 equals
 toString

6

Vector2d

- x: double

- y: double

- name: String

+ Vector2d(): Vector2d

+ Vector2d(double, double): Vector2d

+ Vector2d(String, double, double): Vector2d

+ Vector2d(Vector2d): Vector2d

+ add(Vector2d): void

+ equals(Object): boolean

+ getX(): double

+ getY(): double

+ length(): double

+ multiply(double): void

...

Constructors

• Recall that the role of the constructor is to initialize
the attributes of a new object
– For Vector2D we need to initialize x, y, and name

• We have 4 overloaded constructors

7

Vector2D()
Create the vector (0, 0) with no name.

Vector2D(double x, double y)
Create the vector (x, y) with no name.

Vector2D(String name, double x, double y)
Create the vector (x, y) with the given name.

Vector2D(Vector2D other)
Create a new vector that is equal to the given vector.

Constructors

public Vector2D() {
 this.x = 0;
 this.y = 0;
 this.name = null;
}

public Vector2D(double x, double y) {
 this.x = x;
 this.y = y;
 this.name = null;
}

8

Constructors

public Vector2D(String name, double x, double y) {
 this.x = x;
 this.y = y;
 this.name = name;
}

public Vector2D(Vector2D other) {
 this.x = other.x;
 this.y = other.y;
 this.name = other.name;
}

9

Avoiding Code Duplication

• Notice that the constructor bodies are almost
identical to each other

• Whenever you see duplicated code you should
consider moving the duplicated code into a
method

• In this case, one of the constructors already
does everything we need to implement the
other constructors…

10

Constructors
public Vector2D(double x, double y, String name) {
 this.x = x;
 this.y = y;
 this.name = name;
}

public Vector2D() {
 this(0, 0, null);
}

public Vector2D(double x, double y) {
 this(x, y, null);
}

public Vector2D(Vector2D other) {
 this(other.x, other.y, other.name);
}

11

invokes

invokes

invokes

Constructor Chaining

• When a constructor invokes another
constructor it is called constructor chaining

• To invoke a constructor in the same class you
use the this keyword
– If you do this then it must occur on the first line of

the constructor body

12

Copy Constructor

The copy constructor is a notable overload
 For a class X the copy constructor looks like

 public X(X x)

A copy constructor creates an object by
copying another object of the same type
 You don't need (and should not declare) a copy

constructor for immutable types

13

[AJ p 301-307]

Reminder: Shallow Copy

Memory (RAM)

x y

Aggregate Object Aggregate Object

Part Object Part Object

CSE1020 W09 (Steven C.) 14

Reminder: Deep Copy

Memory (RAM)

x y

Aggregate Object Aggregate Object

Part Object Part Object Part ObjectPart Object

CSE1020 W09 (Steven C.) 15

Accessor Methods

• Recall that accessor methods return information
about the state of the object
– For Vector2D we need to return information about x, y,

and name

• We have 3 accessor methods

16

double getX()
Get the x coordinate of the vector.

double getY()
Get the y coordinate of the vector.

String getName()
Get the name of the vector.

Accessor Methods

public double getX() {
 return this.x;
}

public double getY() {
 return this.y;
}

public String getName() {
 return this.name;
}

17

Mutator Methods

• Recall that mutator methods allow a client to

manipulate the state of the object
– For Vector2D we need to allow the client to

manipulate x, y, and name

18

Mutator Methods

• We have 5 mutator methods

19

void setX(double x)
Set the x coordinate of the vector.

void setY(double y)
Set the y coordinate of the vector.

void setName(String name)
Set the name of the vector.

void set(double x, double y)
Set the x and y coordinate of the vector

void set(String name, double x, double y)
Set the name, x, and y coordinate of the vector

setX(), setY(), and set()
public void setX(double x) {
 this.x = x;
}

public void setY(double y) {
 this.y = y;
}

public void setName(String name) {
 this.name = name;
}

public void set(double x, double y) {
 this.setX(x);
 this.setY(y);
}

public void set(String name, double x, double y) {
 this.setName(name);
 this.set(x, y);
}

20

Equals

• Recall that most value type classes will want
their own version of equals
– We shall say that two vectors are equal if their x,

and y coordinates are equal
• i.e., two vectors might be equal even if their names are

different

21

boolean equals(Object obj)
Compares two vectors for equality.

equals()
@Override public boolean equals(Object obj)
{
 boolean eq = false;
 if (obj == this) {
 eq = true;
 }

 return eq;
}

22

23

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 }

 return eq;

}

24

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 Vector2d other = (Vector2d) obj;

 }

 return eq;

}

25

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 Vector2d other = (Vector2d) obj;

 eq = this.getX() == other.getX() &&

 this.getY() == other.getY();

 }

 return eq;

}

This version works most of the time (except when it doesn’t!)

26

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 Vector2d other = (Vector2d) obj;

 eq = Double.compare(this.getX(), other.getX()) == 0 &&

 Double.compare(this.getY(), other.getY()) == 0;

 }

 return eq;

}

This version always works.

== vs Double.compare

• The issue here is quite subtle
• If you use == to compare the coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)
Vector2D v = new Vector2D(u); // (NaN, 1.0)
boolean eq = u.equals(v);

eq will be false because NaN == NaN is always false
– NaN means “not a number” and is used to represent a

mathematically undefined number
• Such as occurs when you divide zero by zero
• The behavior of NaN is defined in the IEEE 754 standard for

floating point arithmetic (i.e., this is not just a Java issue)

27

== vs Double.compare

• If you use == to compare the coordinates then all hash
based collections and all sets will behave strangely with
vectors having NaN as a component

Set<Vector2D> set = new HashSet<Vector2D>();
Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)
Vector2D v = new Vector2D(u); // (NaN, 1.0)
set.add(u);
set.add(v);
System.out.println(set.size()); // prints 2

• Sets are supposed to reject duplicate elements but
there are 2 identical vectors in set
– Occurs because Set uses equals to check for duplicates

28

== vs Double.compare

• If you use Double.compare to compare the
coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)
Vector2D v = new Vector2D(u); // (NaN, 1.0)
boolean eq = u.equals(v);

eq will be true because Double.compare is
implemented to allow for equality of NaN
• Checking for equality of NaN can be useful when

trying to track down errors in computations
• Also the hash based collections and sets will work

as expected

29

== vs Double.compare

• There is a side effect of using Double.compare
to compare the coordinates

Vector2D u = new Vector2D(0.0, 1.0); // (0.0, 1.0)
Vector2D v = new Vector2D(-0.0, 1.0); // (-0.0, 1.0)
boolean eq = u.equals(v);

eq will be false because Double.compare
considers 0.0 and -0.0 to be unequal

– Can you see how to implement equals to allow for

equality of NaN and equality of 0.0 and -0.0?

30

== vs Double.compare

• The real issue here is that floating point
arithmetic is tricky and affects every
programming language

• A good starting point for learning more about
some of the issues involved
– http://floating-point-gui.de/

31

http://floating-point-gui.de/

Observe That...

 Instead of directly using the attributes, we use
accessor methods where possible
 This reduces code duplication, especially if accessing an

attribute requires a lot of code
 This gives us the possibility to change the

representation of the attributes in the future
 As long as we update the accessor methods (but we would

have to do that anyway to preserve the API)
 For example, instead of two attributes x and y, we

might want to use an array or some sort of Collection
 The notes [notes 2.3.1] call this delegating to

accessors

32

Observe That...

 Instead of directly modifying the attributes, we
use mutator methods where possible
 This reduces code duplication, especially if modifying

an attribute requires a lot of code
 This gives us the possibility to change the

representation of the attributes in the future
 As long as we update the mutator methods (but we would have

to do that anyway to preserve the API)
 For example, instead of two attributes x and y, we

might want to use an array or some sort of Collection
 The notes [notes 2.3.1] call this delegating to

mutators

33

