
Creating a Class Beyond the
Basics (pt 2)

1

Based on slides by Prof. Burton Ma

Arrays as Containers

 Suppose you have an array of unique
PhoneNumbers
 How do you compute whether or not the array

contains a particular PhoneNumber?

2

public static boolean
 hasPhoneNumber(PhoneNumber p,
 PhoneNumber[] numbers)
{
 if (numbers != null) {
 for(PhoneNumber num : numbers) {
 if (num.equals(p)) {
 return true;
 }
 }
 }
 return false;
}

3

• Called linear search or sequential search
– Doubling the length of the array doubles the

amount of searching we need to do
• If there are n PhoneNumbers in the array:

– Best case: the first PhoneNumber is the one we
are searching for  1 call to equals()

– Worst case: the PhoneNumber is not in the array
 n calls to equals()

– Average case: the PhoneNumber is somewhere
in the middle of the array  approximately (n/2)
calls to equals()

hashCode()

 If you override equals() you must override
hashCode()
 Otherwise, the hashed containers won't work

properly
 recall that we did not override hashCode() for
PhoneNumber

4

// client code somewhere
PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();
h.add(pizza);
System.out.println(h.contains(pizza)); // true

PhoneNumber pizzapizza =
 new PhoneNumber(416, 967, 1111);
System.out.println(h.contains(pizzapizza)); // false

[notes 2.3.5]

Hash Tables

You can think of a hash table as being an array
of buckets where each bucket holds the stored
objects

5

0 1 2 3 ... N

Insertion into a Hash Table
To insert an object a, the hash table calls
a.hashCode() method to compute which
bucket to put the object into

6

0 1 2 3 ... N

a.hashCode() 2 a
b.hashCode() 0 b

c.hashCode() N c
d.hashCode() N d

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Search on a Hash Table
To see if a hash table contains an object a, the

hash table calls a.hashCode() method to
compute which bucket to look for a in

7

b

a

c
d

0 1 2 3 ... N

a.hashCode() 2 z.hashCode() N

a.equals()

true

z.equals()

false
z.equals()

false

8

 Searching a hash table is usually much faster than
linear search
 Doubling the number of elements in the hash table

usually does not noticably increase the amount of
search needed

 If there are n PhoneNumbers in the hash table:
 Best case: the bucket is empty, or the first
PhoneNumber in the bucket is the one we are
searching for  0 or 1 call to equals()

 Worst case: all n of the PhoneNumbers are in the
same bucket  N calls to equals()

 Average case: the PhoneNumber is in a bucket with a
small number of other PhoneNumbers  a small
number of calls to equals()

Object hashCode()

 If you don't override hashCode(), you get the
implementation from Object.hashCode()
 Object.hashCode() uses the memory address of the

object to compute the hash code

9

 Note that pizza and pizzapizza are distinct objects
 Therefore, their memory locations must be different
 Therefore, their hash codes are different (probably)
 Therefore, the hash table looks in the wrong bucket (probably) and

does not find the phone number even though
pizzapizza.equals(pizza)

10

// client code somewhere
PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();
h.add(pizza);

PhoneNumber pizzapizza = new PhoneNumber(416, 967, 1111);
System.out.println(h.contains(pizzapizza)); // false

A Bad (but legal) hashCode()
public final class PhoneNumber {
 // attributes, constructors, methods ...

 @Override public int hashCode()
 {
 return 1; // or any other constant int
 }
}

This will cause a hashed container to put all
PhoneNumbers in the same bucket

 11

A Slightly Better hashCode()
public final class PhoneNumber {
 // attributes, constructors, methods ...

 @Override public int hashCode()
 {
 return (int)(this.getAreaCode() +
 this.getExchangeCode() +
 this.getStationCode());
 }
}

12

 The basic idea is generate a hash code using the
attributes of the object

 It would be nice if two distinct objects had two
distinct hash codes
 But this is not required; two different objects can have

the same hash code
 It is required that:

1. If x.equals(y) then x.hashCode() == y.hashCode()
2. x.hashCode() always returns the same value if x does

not change its state

13

Something to Think About

What do you need to be careful of when
putting a mutable object into a HashSet?

14

