
Creating a Class Beyond the
Basics (pt 2)

1

Based on slides by Prof. Burton Ma

Arrays as Containers

 Suppose you have an array of unique
PhoneNumbers
 How do you compute whether or not the array

contains a particular PhoneNumber?

2

public static boolean
 hasPhoneNumber(PhoneNumber p,
 PhoneNumber[] numbers)
{
 if (numbers != null) {
 for(PhoneNumber num : numbers) {
 if (num.equals(p)) {
 return true;
 }
 }
 }
 return false;
}

3

• Called linear search or sequential search
– Doubling the length of the array doubles the

amount of searching we need to do
• If there are n PhoneNumbers in the array:

– Best case: the first PhoneNumber is the one we
are searching for 1 call to equals()

– Worst case: the PhoneNumber is not in the array
 n calls to equals()

– Average case: the PhoneNumber is somewhere
in the middle of the array approximately (n/2)
calls to equals()

hashCode()

 If you override equals() you must override
hashCode()
 Otherwise, the hashed containers won't work

properly
 recall that we did not override hashCode() for
PhoneNumber

4

// client code somewhere
PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();
h.add(pizza);
System.out.println(h.contains(pizza)); // true

PhoneNumber pizzapizza =
 new PhoneNumber(416, 967, 1111);
System.out.println(h.contains(pizzapizza)); // false

[notes 2.3.5]

Hash Tables

You can think of a hash table as being an array
of buckets where each bucket holds the stored
objects

5

0 1 2 3 ... N

Insertion into a Hash Table
To insert an object a, the hash table calls
a.hashCode() method to compute which
bucket to put the object into

6

0 1 2 3 ... N

a.hashCode() 2 a
b.hashCode() 0 b

c.hashCode() N c
d.hashCode() N d

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Search on a Hash Table
To see if a hash table contains an object a, the

hash table calls a.hashCode() method to
compute which bucket to look for a in

7

b

a

c
d

0 1 2 3 ... N

a.hashCode() 2 z.hashCode() N

a.equals()

true

z.equals()

false
z.equals()

false

8

 Searching a hash table is usually much faster than
linear search
 Doubling the number of elements in the hash table

usually does not noticably increase the amount of
search needed

 If there are n PhoneNumbers in the hash table:
 Best case: the bucket is empty, or the first
PhoneNumber in the bucket is the one we are
searching for 0 or 1 call to equals()

 Worst case: all n of the PhoneNumbers are in the
same bucket N calls to equals()

 Average case: the PhoneNumber is in a bucket with a
small number of other PhoneNumbers a small
number of calls to equals()

Object hashCode()

 If you don't override hashCode(), you get the
implementation from Object.hashCode()
 Object.hashCode() uses the memory address of the

object to compute the hash code

9

 Note that pizza and pizzapizza are distinct objects
 Therefore, their memory locations must be different
 Therefore, their hash codes are different (probably)
 Therefore, the hash table looks in the wrong bucket (probably) and

does not find the phone number even though
pizzapizza.equals(pizza)

10

// client code somewhere
PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();
h.add(pizza);

PhoneNumber pizzapizza = new PhoneNumber(416, 967, 1111);
System.out.println(h.contains(pizzapizza)); // false

A Bad (but legal) hashCode()
public final class PhoneNumber {
 // attributes, constructors, methods ...

 @Override public int hashCode()
 {
 return 1; // or any other constant int
 }
}

This will cause a hashed container to put all
PhoneNumbers in the same bucket

 11

A Slightly Better hashCode()
public final class PhoneNumber {
 // attributes, constructors, methods ...

 @Override public int hashCode()
 {
 return (int)(this.getAreaCode() +
 this.getExchangeCode() +
 this.getStationCode());
 }
}

12

 The basic idea is generate a hash code using the
attributes of the object

 It would be nice if two distinct objects had two
distinct hash codes
 But this is not required; two different objects can have

the same hash code
 It is required that:

1. If x.equals(y) then x.hashCode() == y.hashCode()
2. x.hashCode() always returns the same value if x does

not change its state

13

Something to Think About

What do you need to be careful of when
putting a mutable object into a HashSet?

14

