
Creating a Class Beyond the
Basics (pt 1)

1

Based on slides by Prof. Burton Ma

Comparable Objects

Many value types have a natural ordering
 That is, for two objects x and y, x is less than y is

meaningful
 Short, Integer, Float, Double, etc
 Strings can be compared in dictionary order
 Dates can be compared in chronological order
 you might compare Vector2ds by their length
 Dies can be compared by their face value

 If your class has a natural ordering, consider
implementing the Comparable interface
 Doing so allows clients to sort arrays or Collections of

your object

2

Interfaces

 An interface is (usually) a group of related
methods with empty bodies
 The Comparable interface has just one method

public interface Comparable<T>
{
 int compareTo(T t);
}

 A class that implements an interfaces promises to
provide an implementation for every method in
the interface

3

compareTo()

Compares this object with the specified object
for order. Returns a negative integer, zero, or a
positive integer if this object is less than, equal
to, or greater than the specified object.
Throws a ClassCastException if the specified

object type cannot be compared to this object.

4

Die compareTo()
public class Die implements Comparable<Die> {
 // attributes, constructors, methods ...

 public int compareTo(Die other) {
 int result = 0;
 if (this.getValue() < other.getValue()) {
 result = -1;
 }
 else if (this.getValue() > other.getValue()) {
 result = 1;
 }
 return result;
 }
}

5

Die compareTo()

 the following also works for the Die class, but
is dangerous in general:

 public int compareTo(Die other) {
 int result = this.getValue() – other.getValue();
 return result;
 }

6

Comparable Contract

1. The sign of the returned int must flip if the
order of the two compared objects flip
 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

 7

Comparable Contract

2. compareTo() must be transitive
 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then

x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

8

Comparable Contract

3. If x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

9

Consistency with equals

An implementation of compareTo() is said to be
consistent with equals() when

 if x.compareTo(y) == 0 then
 x.equals(y) == true

and
 if x.equals(y) == true then
 x.compareTo(y) == 0

10

Not in the Comparable Contract

 It is not required that compareTo() be
consistent with equals()
 That is if x.compareTo(y) == 0 then
 x.equals(y) == false is acceptable
 Similarly if x.equals(y) == true then
 x.compareTo(y) != 0 is acceptable

Try to come up with examples for both cases

above

11

Implementing compareTo

• Implementing compareTo is similar to
implementing equals

• You need to compare all of the attributes
– Starting with the attribute that is most significant

for ordering purposes and working your way down

12

PhoneNumber compareTo()
public class PhoneNumber implements Comparable<PhoneNumber> {
 // attributes, constructors, methods ...

 public int compareTo(PhoneNumber other) {
 int result = 0;
 result = this.getAreaCode() – other.getAreaCode();
 if (result == 0) {
 result = this.getExchangeCode() – other.getExchangeCode();
 }
 if (result == 0) {
 result = this.getStationCode() – other.getStationCode();
 }
 return result;
 }
}

13

Implementing compareTo

• If you are comparing attributes of type float or
double you should use Float.compare or
Double.compare instead of <, >, or ==

• If your compareTo implementation is broken,
then any classes or methods that rely on
compareTo will behave erratically
– TreeSet, TreeMap
– Many methods in the utility classes Collections

and Arrays

14

Privacy Leaks

• A mutable object that is passed to or returned
from a method can be changed

• Problems:
– Private attributes become publicly accessible
– Objects can be put into an inconsistent state

• Solution:

– Make a copy of the object and save the copy
• Use copy constructors

15

Avoiding Privacy Leaks

• Bad
public Date getDueDate()
{

 return dueDate; // Unsafe
}

• Good
public Date getDueDate()
{

 return new Date(dueDate.getTime()); // Avoid leak
}

16

Avoiding Privacy Leaks (con’t)

• Bad
public void setDueDate(Date newDate)
{

 dueDate = newDate; // Unsafe
}

• Good
public void setDueDate(Date newDate)
{

 dueDate = new Date(newDate.getTime()); // Avoid leak
}

17

