
Creating a Class Beyond the
Basics (pt 1)

1

Based on slides by Prof. Burton Ma

Comparable Objects

Many value types have a natural ordering
 That is, for two objects x and y, x is less than y is

meaningful
 Short, Integer, Float, Double, etc
 Strings can be compared in dictionary order
 Dates can be compared in chronological order
 you might compare Vector2ds by their length
 Dies can be compared by their face value

 If your class has a natural ordering, consider
implementing the Comparable interface
 Doing so allows clients to sort arrays or Collections of

your object

2

Interfaces

 An interface is (usually) a group of related
methods with empty bodies
 The Comparable interface has just one method

public interface Comparable<T>
{
 int compareTo(T t);
}

 A class that implements an interfaces promises to
provide an implementation for every method in
the interface

3

compareTo()

Compares this object with the specified object
for order. Returns a negative integer, zero, or a
positive integer if this object is less than, equal
to, or greater than the specified object.
Throws a ClassCastException if the specified

object type cannot be compared to this object.

4

Die compareTo()
public class Die implements Comparable<Die> {
 // attributes, constructors, methods ...

 public int compareTo(Die other) {
 int result = 0;
 if (this.getValue() < other.getValue()) {
 result = -1;
 }
 else if (this.getValue() > other.getValue()) {
 result = 1;
 }
 return result;
 }
}

5

Die compareTo()

 the following also works for the Die class, but
is dangerous in general:

 public int compareTo(Die other) {
 int result = this.getValue() – other.getValue();
 return result;
 }

6

Comparable Contract

1. The sign of the returned int must flip if the
order of the two compared objects flip
 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

 7

Comparable Contract

2. compareTo() must be transitive
 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then

x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

8

Comparable Contract

3. If x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

9

Consistency with equals

An implementation of compareTo() is said to be
consistent with equals() when

 if x.compareTo(y) == 0 then
 x.equals(y) == true

and
 if x.equals(y) == true then
 x.compareTo(y) == 0

10

Not in the Comparable Contract

 It is not required that compareTo() be
consistent with equals()
 That is if x.compareTo(y) == 0 then
 x.equals(y) == false is acceptable
 Similarly if x.equals(y) == true then
 x.compareTo(y) != 0 is acceptable

Try to come up with examples for both cases

above

11

Implementing compareTo

• Implementing compareTo is similar to
implementing equals

• You need to compare all of the attributes
– Starting with the attribute that is most significant

for ordering purposes and working your way down

12

PhoneNumber compareTo()
public class PhoneNumber implements Comparable<PhoneNumber> {
 // attributes, constructors, methods ...

 public int compareTo(PhoneNumber other) {
 int result = 0;
 result = this.getAreaCode() – other.getAreaCode();
 if (result == 0) {
 result = this.getExchangeCode() – other.getExchangeCode();
 }
 if (result == 0) {
 result = this.getStationCode() – other.getStationCode();
 }
 return result;
 }
}

13

Implementing compareTo

• If you are comparing attributes of type float or
double you should use Float.compare or
Double.compare instead of <, >, or ==

• If your compareTo implementation is broken,
then any classes or methods that rely on
compareTo will behave erratically
– TreeSet, TreeMap
– Many methods in the utility classes Collections

and Arrays

14

Privacy Leaks

• A mutable object that is passed to or returned
from a method can be changed

• Problems:
– Private attributes become publicly accessible
– Objects can be put into an inconsistent state

• Solution:

– Make a copy of the object and save the copy
• Use copy constructors

15

Avoiding Privacy Leaks

• Bad
public Date getDueDate()
{

 return dueDate; // Unsafe
}

• Good
public Date getDueDate()
{

 return new Date(dueDate.getTime()); // Avoid leak
}

16

Avoiding Privacy Leaks (con’t)

• Bad
public void setDueDate(Date newDate)
{

 dueDate = newDate; // Unsafe
}

• Good
public void setDueDate(Date newDate)
{

 dueDate = new Date(newDate.getTime()); // Avoid leak
}

17

