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Abstract. Many applications in computer vision require robust linear
regression on photogrammetrically reconstructed point clouds. Due to
the modeling process from perspective images the uncertainty of an ob-
ject point depends heavily on its location in object space w.r.t. the cam-
eras. Standard algorithms for robust regression are based on distance
measures from the regression surface to the points, but these distances
are biased by varying uncertainties. In this paper a description of the
local object point precision is given and the Mahalanobis distance to a
plane is derived to allow unbiased regression. Illustrative examples are
presented to demonstrate the effect of the statistically motivated distance
measure.

1 Introduction

Several photogrammetric applications require robust surface fitting in 3D point
clouds obtained by dense image matching, as for example architectural recon-
struction [1] or reverse engineering [2].

Robust fitting algorithms are mostly based on sampling strategies: Hypothe-
ses are generated and their support is measured in the point cloud. Examples
for this strategy are the least-median-of-squares (LMS) estimator [3] and differ-
ent variants of the RANSAC principle [4]. This class of algorithms requires to
compute the support of each point for a given hypothesis, i.e. the probability
that the point is explained by the hypothesis. The simplest form is to assign the
probability 1 to all points within a certain threshold distance and 0 to all other
points (voting). Another popular strategy is to assign each point a probability
which is inversely proportional to its distance to the plane (linear weighting).
The statistically correct procedure is to use the value of the probability density
function (pdf) at the given distance. In any case computing the support requires
a suitable distance measurel.

We argue that this distance measure must take into account the individual
uncertainties of the object points, because they are highly inhomogeneous in

o

It should be mentioned that the same problem exists for robust regression meth-
ods which operate in parameter space, namely clustering methods and the Hough
transform, where we need a threshold for the clustering radius in the parameter
space.
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photogrammetric point clouds (see Figure [[). In this paper we treat the basic
case of (orthogonal) linear regression. The task to be solved is optimally fitting
an unknown number of planes to a cloud of 3D points with known, individually
different variances and covariances. However the presented ideas are also valid
for regression with other parametric surfaces (in fact the distance from a point
to a higher-order surface is the distance from the point to the tangent plane
through the closest surface point).

NB: Least-squares fitting as a postprocessing step may in many cases al-
leviate, but not solve the problem, because it requires a correct partitioning
of the point cloud into inliers and outliers, and this partitioning is based on
the support computed during robust regression. It has been suggested to use
a generous threshold for the inliers and compute the fit with an M-estimator
[5]. However it seems an awkward strategy to approximately detect inliers with
a robust method, re-include some outliers and fit with another robust method,
instead of cleanly dividing the task into two steps, one for robust detection of
the correct point set and one for optimal fitting.

The paper is organized as follows: in section [2] we briefly review the uncer-
tainty propagation of the photogrammetric reconstruction process. In section B]
we derive the Mahalanobis distance to a plane, and in section [ we illustrate
the difference between the use of the Mahalanobis distance and the geometric
distance.

2 Uncertainty of Photogrammetric Points

This section is a brief recapitulation of the uncertainty propagation in the pho-
togrammetric reconstruction process. For lack of space we refer to photogram-
metric textbooks, e.g. [6] for details. A measured image point is described by its
coordinates and the covariance matrix

X= [xvy]T y Sxx = |:S:1:x Smy:| (1)
Say Syy
Different image points are assumed to be statistically independent. A 3D
point u is constructed from N image points by intersecting their viewing rays, i.e.
solving the 2x N collinearity equations for u. This gives an overdetermined (non-
linear) equation system which is linearized with the Jacobian A of the collinearity
equations

Au=b , b:[X1-~-Xn]T

(2)

and solved through iterative least-squares adjustmentﬁ. Error propagation
gives a linear approximation Sy, for the covariance matrix of the estimated 3D
point coordinates.

2 An elegant formulation in homogeneous coordinates has recently been published by
Forstner [7].
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U=SuwATSplb , Suu = (ATS; A)7! (3)

From equation Bl we can see that the uncertainty of point u, through the
collinearity equations, depends on the camera positions. The uncertainty is low,
if the point is close to the cameras and if the intersection angles between different
rays are close to 90 degrees. Typically dense point clouds are generated from
image sequences with short baselines in order to enable automatic matching
with area-based correlation. In such a recording setup the depth has the highest
uncertainty. Moreover, if the camera path is (nearly) linear, e.g. in turntable
sequences or when recording buildings from ground level, the depth is highly
correlated with the direction of camera motion, so that covariances cannot be
neglected. Figure [[lshows a prototypical setup, which we will use as an example.

T T

(a) (b)

Fig. 1. Typical recording setup for automatic reconstruction. (a) Top view of cameras
and recorded object plane. (b) Reconstructed points, given by error ellipsoids. The gray
ellipses are the projections of the error ellipsoids onto the x, z-plane, computed for a
image measurement accuracy of 1:1000. The error ellipsoids are scaled by a factor 10
to make the figure easier to read.

3 Mahalanobis Distance to a Plane

The point coordinates and covariance matrix describe the point position in space
with a 3-dimensional probability distribution. The point is thus given by

Suu Suv Suw
) S'uu = | Suv Svv Svw (4)

S’U/LU va Sww

u = [u,v,w]"
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Let the plane hypothesis in homogeneous coordinates be denoted by p =
(p1,p2,p3,pa), where hp = \/p? + p3 + p3 is the homogeneous scale. Since the
goal of the distance measure is to determine the probability that a point belongs
to the plane, the distance measure must take into account the uncertainty of
each individual point. This is achieved by the Mahalanobis distance [§] — for
a more detailed treatment of its role in optimal geometric fitting see [5]. The
Mahalanobis distance from an uncertain point x to a given point X (in Euclidian
coordinates) is defined as

2, = (x-%)Tsl(x-x) (5)

XX

To get the Mahalanobis distance to a plane, we have to apply a whitening
transform and normalization to the covariance matrix Sy, and the plane (geo-
metrically this means warping the error ellipsoid to a unit sphere). The centering
is simply a shift from u to (0,0,0)T. Since the covariance matrix Sy, is symmet-
ric, its singular value decomposition (SVD) directly gives the rotation R and the
scale V.

Seu =R'VR , V= diag(a® b? c?) (6)

R aligns the coordinate system with the ellipsoid axes, while the elements
a,b,c of V.compensate for the non-uniform scale along different axes. We can
now write the transformation as a product of homogeneous 4 x 4 matrices

RO I 0 .

Rp = |:OT 1:| , Th= |:_uT 1:| , Ap = dlag(av ba ¢, 1) (7)

and transform the plane p to a new plane q = ApR, T, p. The Mahalanobis

distance is the distance from the transformed plane q to the center of the unit
sphere, which lies in the origin of the new coordinate system (see Figure [2)).

dy(u) = # (3)
Va4t 43 + 43

Lacking a more qualified pdf, we recur to the common approximation of nor-
mally distributed image measurement errors (although it is theoretically ques-
tionable). In first-order approximation the distances from the points to the plane,
being functions of the image point coordinates, also follow a normal distribu-
tion. A points support for the plane is thus determined by the percentile rank

of dps(u) in the normalized Gaussian probability density function:

+dM(Ll —d]u(ll)

5@):1-% /)e—*fdtZ\/Z / 5 dt )

7d]u(u)
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plane

plane
plane /
do *

Fig. 2. Comparing distances in the presence of varying point precision. The probability
of belonging to the plane is higher for point u; than for point us although di > ds.
After transforming the error ellipsoids to unit spheres the distance measures correctly
reflect the probabilities.

The total support for a plane in a point set {uj,us,...,u,} is the sum of
the support values S(u;).

4 Examples

In this section we give two examples of how regression with the Mahalanobis
distances dps(u) differs from regression with the plain geometric distances d(u).
We will use the synthetic data set shown in Figure [l Sampling-based regression
algorithms instantiate many planes and test their support in the point set. The
instantiation is usually done from a minimal set of 3 points. Note however that
this is not relevant for the statistical properties. The planes can be arbitrarily
derived and are error-free hypotheses.

The first example in Figure[3fa) illustrates the task of separating inliers from
outliers. The continuous line marks the plane hypothesis we want to evaluate. If
we use the geometric distance, all points within the threshold ¢ are considered
inliers, the rest are outliers. The two points marked X and Y are classified as
outliers, while the point marked Z is classified as inlier. Statistically this is not
correct — the probability of being incident to the plane is higher for X and Y
than for Z. Thresholding the Mahalanobis distance is equivalent to a y2-test and
correctly divides the point set into inliers and outliers according to the probabiliy
of being incident to the plane.

The second example illustrates the problem of choosing the correct threshold.
The two planes depicted in Figure[3|(b) by continuous lines are two possible plane
hypothesis. Plane A has been randomly instantiated from the leftmost three
points, while plane B has been instantiated from the rightmost 3 points. One
can clearly see that plane B is a more probable estimate and should be preferred,
as it explains more points within their uncertainty. The discriminative power of
the sampling procedure, i.e. the ability to discriminate the better solution from
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Fig. 3. Geometric distance vs. Mahalanobis distance. See text for explanation.

the worse one when comparing them, depends on the thresholds. It is a critical
task to choose a threshold, which selects a good estimate without discarding too
many inliers. Figure [Bl(c) shows the discriminative power as a function of the
threshold for different weighting functions. The evaluated functions are

— voting (continuous line): S(u) = { Jfd(u) <t, 0...else}
— linear weighting (dashed): S(u) = ( (1 —d(u)/t), 0)
— Gaussian weighting (dotted): S(u ) = 2 cdfGauss,u=0,0=t(—d(u))

The discriminative power is defined as pg = (Sp/Sa — 1), values close to
0 mean that no reliable discrimination is possible. The horizontal line denotes
the constant discriminative power of the Mahalanobis distance, which does not
need a threshold. The two vertical lines indicate the mean standard deviation
Smean estimated from Sy, (the minimum threshold to make sure that more than
half of the inliers are detected) and the maximum standard deviation 8,4, (the
threshold we would have to choose to include all inliers). One can clearly see that
a threshold with a reasonable discriminative power d,, > 1 leads to an incomplete
inlier set and thus to a biased fit.

5 Concluding Remarks

We have investigated the influence of uncertainties on sampling-based regression
methods in photogrammetric point clouds and derived the Mahalanobis distance
from a point to a plane in order to correctly take the uncertainties of individual
points into account during regression. Two prototypical examples have been
shown to demonstrate the implications of the statistical nature of the point
cloud.

We have assumed Gaussian noise of the image measurements. This is a com-
mon assumption, however there is no theoretical foundation for it, even less, if the
points are derived automatically through a matching procedure. Furthermore it
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would be desirable to investigate the influence of systematic errors, which are in-
troduced by the smoothness and ordering constraints [9], [L0] of dense matching
algorithms.
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