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Abstract

In order to provide navigational guidance during computer-integrated orthopedic surgery, the anatomy of the patient must first be
registered to a medical image or model. A common registration approach is to digitize points from the surface of a bone and then find the
rigid transformation that best matches the points to the model by constrained optimization. Many optimization criteria, including a
least-squares objective function, perform poorly if the data include spurious data points (outliers). This paper describes a statistically
robust, surface-based registration algorithm that we have developed for orthopedic surgery. To find an initial estimate, the user digitizes
points from predefined regions of bone that are large enough to reliably locate even in the absence of anatomic landmarks. Outliers are
automatically detected and managed by integrating a statistically robustM-estimator with the iterative-closest-point algorithm. Our in
vitro validation method simulated the registration process by drawing registration data points from several sets of densely digitized surface
points. The method has been used clinically in computer-integrated surgery for high tibial osteotomy, distal radius osteotomy, and
excision of osteoid osteoma.
   2003 Elsevier B.V. All rights reserved.
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1 . Introduction registration; the computation speed and registration accura-
cy depend on how this initial estimate is chosen. Two

Registration of a patient to a medical image or model is acknowledged problems with ICP-like algorithms are (1)
a fundamental requirement of computer-integrated surgery the requirement of a good initial estimate, and (2) that
(CIS) systems that provide intraoperative navigational minimization of the sum of squared errors is optimal only
guidance. A registration method for general use in ortho- under the assumption that measurement errors are in-
pedic surgery should be effective, fast, and simple to use. dependent and have identical Gaussian distributions. If
It should not depend on readily locatable anatomic land- noise in the measurements is non-Gaussian, a least-squares
marks because these are often difficult to find or nonexis- error measure can produce poor results. A common source
tent such as when performing a percutaneous procedure. of non-Gaussian noise is the presence of statistical outliers

The iterative-closest-point (ICP) algorithm of Besl and which can be present in the measurements if, for example,
McKay (1992) is a well-known method for registering a a measurement is accidentally collected far from the target
3D set of points to a 3D model that minimizes the sum of anatomy or is taken from a point outside the medical
squared residual errors between the set and the model, i.e. image. Fig. 1 illustrates the effect of outliers on registra-
it finds a registration that is locally best in a least-squares tion accuracy.
sense. This algorithm requires an initial estimate of the Two attractive features of ICP are that it is guaranteed to

converge to a minimum in its objective function, and
convergence is very fast when started from a good initial*Corresponding author.
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Fig. 1. The effect of outliers on registration accuracy. On the left are 16 measured contact points from a phantom tibia; three of the points are outliers. In
the middle is a registration obtained using ICP initialized with a good estimate of a reasonable registration. On the right is a registration obtainedusing our
robust implementation of ICP started from the same initial estimate.

Levoy (2001) that was not robust to outliers has been required by ICP, and discussed how to choose an optimal
shown to register 2000 data points to models comprised of set of points to use for registration. Cuchet et al. (1995)
100 000 points in tens of milliseconds. The computational used a chamfer map to accelerate the nearest-neighbor
efficiency of ICP makes it an attractive starting point for a search.
robust registration algorithm. Rusinkiewicz and Levoy (2001) studied several varia-

We have previously described a robust registration tions of ICP for model-based tracking and 3D scanning.
algorithm in (Ma et al., 1999). In this article, we describe Greenspan and Godin (2001) have described ICP variants
our experiences using this algorithm for orthopedic pro- that use nearest-neighbour search methods which are
cedures. In Section 2 we present a brief summary of significantly faster thank–d tree methods for surfaces
ICP-like methods and robust registration methods. In represented by point sets.
Section 3 we describe our registration algorithm. In Rangarajan et al. (1997) extended the Procrustes method
Section 4 we describe our in vitro experiments used to to matching point sets of different cardinality with un-
validate registration accuracy. In Section 5 we describe the known correspondences. Their Softassign method jointly
clinical application of our algorithm for high tibial os- solves for the rotation and point correspondances, treating
teotomy, distal radius osteotomy, and excision of osteoid non-homologies as outliers. There is empirical evidence in
osteoma. We conclude by discussing the results and (Rangarajan et al., 1999) suggesting that the Softassign
limitations of our work. objective function is much smoother than the root mean

squared error function minimized by ICP. Chui and
Rangarajan (2000) re-interpreted their previous work as a

2 . Related work maximum likelihood problem and used an approach simi-
lar to expectation maximization to solve the feature

´Lavallee (1995) and Maintz and Viergever (1998) have registration problem. Their expectation-like step updates
extensively reviewed the literature on general registration the feature correspondences and the maximization step
algorithms. Here, we will review the literature of ICP-like updates the registration transformation. Similar methods
methods and robust registration methods. were independently developed by Granger et al. (2001).

Several research groups have reported using ICP in CIS Dellaert (2001) argued that the feature correspondences
applications. Palombara et al. (1997), who used ICP for in were actually nuisance parameters and that one needs to
vitro experiments related to total knee arthroplasty, re- compute the probability distribution of the transformation
ported that outliers were detrimental to the accuracy of the parameters over all possible correspondences. Since there
computed registrations. Betting et al. (1995) used a are a combinatorial number of correspondences, the exact
modified version of ICP that took into account surface- solution is computationally intractable and was approxi-
normal information and that used ak–d tree to accelerate mated using Monte Carlo sampling. All of these methods
the nearest-neighbor search. Maurer et al. (1996) also used can be made robust against outliers.
a k–d tree to accelerate ICP, and discussed how to Zhang (1994) independently described an algorithm that
decompose a set of surface primitives into a weighted is very similar to ICP. He attempted to identify outliers by
point-set representation. Applications of their algorithm examining the standard deviation of the residual matching
have also been reported in (Herring et al., 1998) and errors and removing those points that had errors greater
(Maurer et al., 1998). Simon et al. (1995) used ak–d tree than some multiple of the standard deviation. We can
and other techniques to decrease the computation time identify three problems with this thresholding approach.
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First, there is no mathematically sound way of choosing found that obtaining a good solution with their Tukey-
the threshold value as some multiple of the standard based algorithm depended critically on the quality of the
deviation. Second, a least-squares solution assumes a initial estimate of the registration.
Gaussian distribution of the residual errors, yet an outlier Masuda and Yokoya (1995) reported a statistically
may have asmaller residual error than a valid observation robust version of ICP. Their algorithm used the LMS
after a least-squares procedure. Finally, thresholding does estimator, and it was applied to the segmentation and
not address the issue of the true underlying distribution of matching of range images. They claimed that, for range
the measurement errors. Despite these limitations, other images of size 2563256 and larger, their method could
researchers Blais and Levine (1995) and Feldmar and segment and register images with up to 50% outlier
Ayache (1994) have applied thresholding in an attempt to contamination.
remove outliers in their registration methods. Luck et al. (2000) recently reported a robust version of

Robust registration is a process of attempting to dimin- ICP that uses simulated annealing in an attempt to find the
ish or eliminate the effects of outliers in estimating the registration that produces the global minimum matching
registration transformation. Most previous work in robust error. They applied their algorithm to the segmentation and
registration has been done by the computer-vision com- matching of range images. They claimed that their method
munity. Fischler and Bolles (1981) reported one of the first could register images with up to 50% outlier contamina-
statistically robust algorithms for scene analysis. Their tion.
random-sample consensus (RANSAC) algorithm randomly ICP-like algorithms estimate the rigid transformation by
draws a minimum number of data points to solve the searching for correspondences between the data and the
estimation problem; this minimal set is used to generate an model. Instead of searching for correspondences, we can
initial solution. The consensus set is the set of all data attempt to directly estimate the best transformation. One
points that agree with the initial solution to within some such algorithm described by Rucklidge (1996) minimizes
tolerance value. If the cardinality of the consensus set is the Hausdorff distance by evaluating the Hausdorff dis-
sufficiently large, then the consensus set is used to tance on a discretized subdivision of the the transformation
compute a new estimate of the solution. If the cardinality space of rotation and translation. The Hausdorff distance
of the consensus set is too small, then a new random subset can be modified to be robust against outliers, but is known
is drawn to obtain a different initial solution. Meer et al. to have local minima. Interesting timing comparisons
(1991) have stated that RANSAC and least-median-of- between the Hausdorff distance and the absolute difference
squares (LMS) estimation yield very similar results. distance were reported by Hagedoorn and Veltkamp (1999)

Haralick et al. (1989) presented a solution to the two- for 2D pattern matching. For rigid 2D transformations,
dimensional registration problem for matched-point sets matching patterns with hundreds of features required
using the TukeyM-estimator. They tested their method on between 2 and 4 minutes for the Hausdorff distance. The
synthetic data with added Gaussian noise and gross accuracy of these methods depends on the coarseness of
outliers. They concluded that their robust method had the discretization of the transformation space.

¨better performance and stability than a least-squares solu- Bachler et al. (2001) described their restricted surface
tion, but that it did not always discriminate accurately matching algorithm which searches for the registration
between outliers and valid data points. Robust estimation transformation parameters using an evolution strategy
using M-estimators is a well known topic described by combined with local minimum optimization algorithm
Hampel et al. (1986), Hoaglin et al. (1983) and Huber (Powell’s method). They initialized their algorithm by
(1981). using paired-point matching to a few coarse landmarks.

Kumar and Hanson (1990) solved the registration They also included a penalty function in their objective
problem, given the correspondence between three-dimen- function that penalized transformations that resulted in
sional lines represented in a world coordinate frame and poor matching of the coarse landmarks.
two-dimensional image lines represented in a camera
coordinate frame, using a TukeyM-estimator algorithm
and an LMS algorithm. The LMS estimator was described

3 . Algorithmby Rousseeuw and Leroy (1987). Because the LMS
estimator does not have an analytic solution, algorithms

In CIS, rigid-body surface-based registration is theused to compute it typically resort to brute-force minimiza-
process of finding a transformation from a set of measuredtion of the LMS objective function. If the running time for
points on the target anatomy to the model surface derivedsuch an algorithm is too high, one can use a probabilistic →
from the medical image. LetP 5 hp j be a set ofnargument to limit the size of the minimization problem at i

surface-data points measured from the target anatomy bythe risk of obtaining a poor solution. For their registration →
the surgeon, letX 5 hx j be the set of all points on theproblem, the authors found that they had to search through i →→ →

a much larger number of potential solutions to find a good surface model, and letT z 5R z 1 t be a rigid transforma-
→

registration than the probabilistic argument predicted. They tion of a pointz . The registration goal is to find both the



240 B. Ma, R.E. Ellis / Medical Image Analysis 7 (2003) 237–250

rigid-body transformationT and somen-element subsetY
of model surface locationsX to which the target anatomy
locationsP project underT. In the presence of errors the
anatomical pointsP will not in general project exactly onto
Y. A least-squares solution to the surface-based registration
can be stated as the minimum, overT and Y #X, of

n n
→ → →2 2F (Y)5Oiy 2Tp i 5Oi r i , (1)2 i i i

i51 i51

→ →
where y [Y, and i r i is the magnitude of the residuali i

matching error. In the general case this is a non-convex
minimization problem with multiple local minima.

Many robust estimation techniques useM-estimation, in
which theL norm in (1) is replaced with a robust norm to2

yield an objective function of the form
n Fig. 2. Spotlight regions for registration shown on surface meshes of

F (Y)5O r(r ; s), (2) phantom bones derived from computed tomography. The spheres markM i
i51 the centers of the spotlights. Clockwise from upper left: medial femur,

posterior vertebra, medial tibia and proximal tibia.wherer(r ; s) is the robust norm applied to the residualr ,i i

ands is a scale parameter that depends on the form of the
expected error distribution. One robust estimator that has
reportedly provided good performance on 3D range data is
the Tukey biweight used by Mirza and Boyer (1993): 3. The initial contact points were first matched to the

spotlight centroids on the model using a simple least-2 2 3
s r squares minimization method (Horn, 1987).] ]12 12 if r < us u,S S DD2r(r; s)5 2 (3)s 4. The initial contact points were then matched to the5 2
s /2 otherwise. spotlight surface regions on the model, using a least-

squares ICP method.3 .1. Robust registration estimation
5. The surgeon then contacted another set of points on the

relevant exposed anatomical region for refinement ofWe produced a robust version of ICP by modifying the
the registration transformation. In practice, these loca-process of updating the registration. This required a
tions should be chosen to cover the anatomy that will besolution to the absolute orientation problem, for which
involved in the image-guided surgery and should pro-Horn’s method provided a common least-squares solution.
vide sufficient translational and rotational constraints onTo obtain anM-estimate of absolute orientation, we
the registration.used an iteratively reweighted least-squares modification

6. The initial registration, along with the full set of contact(Hoaglin et al., 1983; Haralick et al., 1989) of Horn’s
points, was then scored. The initial registration wasmethod (Horn, 1987). The scale parameters in Eq. (3)
repeatedly perturbed, and the least-squares residual forwas estimated (Rousseeuw and Leroy, 1987) by using the

→ each point was calculated. The perturbation with themedian of absolute deviations of the residuals:r (t)5i→ → largest number of residuals that were all less than ay 2Tp :i i user-supplied threshold was taken as the best initial
→ → registration estimate; that is we seek to maximize thes 51.4826median i r i2median i r i . (4)s di51 . . . n i i51 . . . n j

rank of the largest residual with magnitude smaller than
some threshold value.The main stages of our surface-based registration method

7. Finally, the perturbation registration estimate was re-were:
fined further using a version of the ICP algorithm that1. Spotlight regions were selected on the model of the
incorporated the robust Tukey-biweightM-estimator.anatomy. A spotlight is a generalization of an ana-

Each iteration of the ICP algorithm actually involves twotomical landmark, which we use for anatomical sites on
estimation steps: given a registration estimate, one needs towhich distinctive landmarks are not available intra-
find the set of closest points on the surface to theoperatively. A spotlight is region of the model that the
transformed data points. From these closest points on thesurgeon can locate readily on the patient.
surface, one then needs to update the registration estimate.2. Spotlight data were gathered intraoperatively. The
It is important that the search for the closest points be fastsurgeon contacted points on the exposed anatomical
because it is one of the most computationally demandingregions that corresponded to the spotlights shown on a
steps of the algorithm.monitor, as in Fig. 2.
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Table 13 .2. Refinement of registration using perturbation
Number of vertices and triangular facets in the anatomic models
generated using isosurface reconstruction

Even when started from a reasonable spotlight estimate,
Phantom name [Vertices [ Facetstraditional ICP and simplistic robust variants suffer from

‘trapping’ by converging to a local non-global minimum of Femur 15 395 30 152
Tibia-hto 34 537 68 564the registration parameters. The usual robustness remedy is
Tibia-tkr 24 453 48 048to perturb the solutions at the first, and possibly subsequent
Vertebra 27 096 54 904

registration estimates (Grimson et al., 1995; Henri et al.,
1995). Our remedy for trapping was to use a perturbation
technique to conduct a local search through the possible
registrations, seeking the registration that gives the best toms were extracted from the CT scans using isosurface
least-squares fit for the largest number of points. This reconstruction. A decimation algorithm was used to reduce
alternative was accomplished heuristically by means of a the number of very small facets that are an artifact of the
simple search procedure. isosurface algorithm (Schroeder et al., 1998). The model

Our implementation sampled 64 points uniformly from a details are given in Table 1.
unit hemisphere to define 64 axes of rotation. The surgical All surface measurements were obtained using a six-
data were rotated, about their mutual centroid, around each degree-of-freedom mechanical pointer (Faro Technologies,
of these axes by638 and the Euclidean residual errors Lake Mary, FL, USA) instrumented with a sharp tip probe.
were calculated. For each of the 128 rotations, if half of The manufacturer’s specification of accuracy for this
the transformed surgical data had residuals that were less device is60.3 mm in position.
than a provided threshold value (1 mm) then the rotation Experimental registrations were examined with respect
was noted. The perturbation that produced, for at least half to a fiducial registration derived from the implanted
the surgical data, the maximum rank of the largest residual markers. When comparing an experimental registration
below a threshold value was deemed to be the perturbation transformationT to the marker-based registrationT, thej

that gave the best initial fit to the refinement surgical data. rotation error in degrees was computed. This was done by
first finding the residual rigid transformation,D that
satisfied the equation

4 . An in vitro study
21T ( ? )5D( ? ) T( ? ) ⇒ D( ? )5T ( ? ) T( ? ) . (5)j j

Our in vitro experiments involved registering 3D digit-
ized points to computer models of plastic bone phantoms. D was then decomposed into a screw transformation from
Fiducial markers were inserted into all of the phantoms in which the rotation error about the screw axis could be
order to obtain a registration with known error bounds obtained (Ellis et al., 1997). In addition to calculating the
relative to ground truth. This section describes our ex- rotational error, the experimental registration was applied

→perimental methods and results. to the set ofN measured marker points,P 5 hp j, and theP i

root-mean-square (RMS) error was computed as
4 .1. Materials and methods

]]]]]NP1 → → 2The phantoms used in the experiments were urethane- ]RMS error5 OiT p 2x i , (6)j i iNœ P i51foam anatomical models (Pacific Research Laboratories,
Vashon, WA, USA). One left tibia, one left femur, and one

→
lumbar vertebra phantom were used in the experiments. where X 5 hx j was the set ofN 5N marker points ini X P

 Anchorlok Leading Edge soft tissue anchors (Wright model coordinates.
Medical, Arlington, TN, USA), which were titanium-alloy In order to evaluate the accuracy of our algorithm, we
anchor screws of 1.9 mm diameter, were used as fiducialdensely sampled the surface of each phantom using the
markers. The marker locations were extracted from the CT FARO mechanical arm. A series of non-overlapping
images using a previously validated center-of-mass tech-square grids were drawn on each phantom where the
nique (Ellis et al., 1996). spacing between the grid lines was approximately 1 mm.

Computed tomography (CT) scans were performed at Each phantom was fixed in a frame that was mechanically
Kingston General Hospital (Kingston, Ontario, Canada) rigid with respect to the base of the FARO arm. The
using a HiSpeed CT scanner (GE Medical Systems, surfaces of the phantoms were sampled by contacting the
Milwaukee, WI, USA). The CT images were acquired FARO probe tip to each intersection of grid lines, resulting
using a protocol that was known to produce good patient in an approximately uniform sampling over an area
images: axial mode, slice width 3 mm, and slice spacing 2 consistent with the exposure of a particular surgical
mm. procedure. Details of the surface sampling are shown in

Three-dimensional triangular facet models of the phan- Table 2.
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Table 2 digitized outlier data set and appending them to the
Details of surface contact point sampling for the various phantoms used registration point set, varying the number of outliers from
in the surface-based registration experiments

zero to five. The position of the fiducial markers were also
Phantom Approximate Number of Number measured to obtain a fiducial registration.
name region area sampled of points One thousand registration point sets were registered to

(mm3mm) regions per region
each phantom model using our robust algorithm. We also

Femur 10310 8 100 used the ordinary least-squares ICP algorithm starting from
Tibia-hto 10310 12 100

our spotlight-based estimate to obtain registrations. TheTibia-tkr 10310 11 100
rotation and RMS errors compared to the fiducial registra-Vertebra 636 8 36
tion were computed for each of the one thousand trials.

The total number of registration points used for the
The surface points for the femur were collected from the femur, tibia-hto, tibia-tkr and vertebra phantoms were 13,

inferior mediolateral aspect in the surgical exposure of a 16, 15 and 12, respectively (the sum of the third columns
total knee replacement procedure. On the tibia, two sets of from Tables 2 and 3). The number of registration points

¨points were used. One set was selected from the superior was comparable to that used by Bachler et al. (2001) and
anterolateral aspect of the tibia in an area which would be are consistent with the number of points that can readily be
accessible during a high-tibial osteotomy procedure. The collected through a minimally invasive surgical exposure.
other set was selected from the superior anterior and the With five additive outliers, the fraction of outlier contami-
superior anteromedial regions between the tibial plateau nation was between 24 and 29%.
and the insertion of the patellar tendon in an area which
would be accessible during a total knee replacement
procedure. On the lumbar vertebra, the points were chosen4 .2. Results and discussion
from the posterior aspect on the transverse processes,
superior articular processes, and the laminae at the base of Histograms of the rotation error results are shown in
the spinous process—these areas would be accessible Figs. 3–6. The RMS errors calculated using Eq. (6) have
during a pedicle-screw insertion procedure. similar distributions, and their statistics are tabulated in

Spotlights of an appropriate size and location were Table 4.
selected from each model. Using the marker-based regis- One interesting result of this experiment was that, given
tration, the center of each spotlight was visually estimated only a relatively small number of digitized points distribut-
on the phantom surface and then contacted with the ed over the area of interest, ICP initialized from a
mechanical pointer. The spotlight region was then sampled spotlight-based estimate converged to a registration close
approximately uniformly with a datum spacing of approxi- to the fiducial registration. There were median rotation
mately 1 mm. Details of the spotlight sampling are shown differences of 2–38 and median RMS errors of 2–3 mm
in Table 3. The spotlights used in the experiments are between the surface-based and fiducial-based registrations.
shown in Fig. 2. We were surprised that by using only a dozen or so

For each phantom, one set of 120 outliers were col- measurements we could obtain registrations with this level
lected. Each outlier was collected approximately 5 mm of error, especially given the fact that the measured points
from the phantom surface by inserting a spacer between were chosen at random.
the phantom and the tip of the mechanical pointer. The histograms (Figs. 3–5) show that the performance

Our laboratory experiments were conducted to deter- of the least-squares-based ICP algorithm deteriorated as
mine the quality of the final surface registration obtained the number of additive outliers was increased. The per-
starting from a spotlight estimate. For each phantom, one formance of the Tukey-based ICP algorithm remained
datum from every digitized spotlight and square grid data consistent as the number of additive outliers was increased.
set was randomly chosen to form a registration point set. Also, the performance of the Tukey-based algorithm is
Outliers were added by randomly choosing points from the similar to that of the least-squares algorithm for the zero

outlier case.
The histograms also show that the spread or variance ofTable 3

the distributions is large for both the least-squares andDetails of spotlight contact point sampling for the various phantoms used
in the surface-based registration experiments Tukey-based algorithms. Several factors were responsible

for this: the large size of the spotlights limited the accuracyPhantom Approximate Number of Number of points
name spotlight spotlights per spotlight of the initial estimate, the small number of points under-

diameter constrained the surface-based registration problem, and
ICP is only guaranteed to converge to a local minimaFemur 25 mm 5 131, 123, 127, 140, 123

Tibia-hto 25 mm 4 100, 100, 100, 100 solution.
Tibia-tkr 25 mm 4 111, 118, 117, 127 The results for the vertebral phantom had an unusually
Vertebra 10 mm 4 99, 86, 116, 116 large number of very poor registrations even though the
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Fig. 3. Rotation error distributions of the ICP and ICP–Tukey algorithms for the tibia-HTO phantom.

median results were good. This was because our surfaceanterior surfaces of the transverse processes and the spinal
model included the entire exterior surface of the phantom canal are valid surfaces for the registration algorithm. This
rather than just the plausible surgically accessible surfaces. situation occurred when the initial spotlight estimate of the
For the vertebral phantom, this is problematic because the registration was poor. Fig. 7 shows an example where this

Fig. 4. Rotation error distributions of the ICP and ICP–Tukey algorithms for the femur-TKR phantom.
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Fig. 5. Rotation error distributions of the ICP and ICP–Tukey algorithms for the tibia-TKR phantom.

problem is further compounded by the ability of the robust naive application of an isosurface algorithm, such as the
estimator to disregard points. threshold-based marching-cubes algorithm (Lorensen and

Another noteworthy point is that the surface model must Cline, 1987), typically results in a model with internal
be comprised of only the exterior surface of the object. A surfaces. For example, the internal interfaces between

Fig. 6. Rotation error distributions of the ICP and ICP–Tukey algorithms for the vertebra phantom.
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Table 4
Rotation error statistics in degrees for plastic phantom registration experiments

Phantom name [ Outliers ICP ICP–Tukey

Mean S.D. Median Mean S.D. Median

Tibia-hto 0 3.20 2.10 2.68 2.37 1.73 1.98
1 3.76 2.29 3.21 2.40 1.62 2.03
3 4.46 2.55 3.98 2.41 1.89 2.07
5 4.53 2.38 4.07 2.28 1.73 1.90

Femur-tkr 0 4.38 2.68 3.74 3.40 2.30 2.77
1 5.55 2.68 5.14 3.29 2.26 2.68
3 6.68 3.26 6.20 3.10 2.09 2.58
5 6.61 3.13 6.25 3.49 2.83 2.69

Tibia-tkr 0 4.38 2.38 4.01 4.02 2.73 3.33
1 4.56 2.34 4.13 3.38 2.47 2.55
3 5.27 2.54 4.87 3.26 2.42 2.56
5 5.32 2.42 5.00 3.35 2.58 2.49

Vertebra 0 2.52 1.30 2.38 2.87 2.77 2.12
1 6.71 5.92 5.03 3.02 3.13 2.24
3 12.03 8.41 9.34 3.84 5.06 2.23
5 13.54 8.86 11.20 4.75 5.84 2.31

Fig. 7. Two different possible registrations from the same digitized point set for the lumbar vertebra phantom. In the left column are three views of a
fiducial registration applied to a set of 12 contact points measured from the posterior aspect of a phantom lumbar vertebra. In the right hand column are
three similar views of an incorrect robust registration. The robust algorithm has converged to a registration where points match surfaces from the spinal
canal and the anterior aspect of the transverse processes. It has also incorrectly rejected a point as an outlier.
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cortical bone and the marrow, and the internal structures of to treat a relatively young or active patient having osteo-
cancellous bone, are typically present in an isosurface arthritis that is confined to the medial compartment of the
model. We removed these non-exterior surfaces prior to knee. The goal of this procedure is to correct the me-
estimating the registration. chanical axis of the leg so that load is carried mainly by

Our experiments did not quantify the accuracy of the the unaffected lateral compartment of the knee. This is
entire process of registration. In general, registration errors accomplished by removing a wedge of bone from the
are caused by a combination of factors, including inac- lateral side of the proximal tibia and closing the wedge like
curacies in imaging, model generation, digitization of a hinge. In the modified Coventry technique for this
surface points, and the registration algorithm. Our study procedure, one or more Kirschner wires are drilled into the
only included errors in digitization caused by intentional proximal tibia to define one or both planes of the wedge.
outliers, by the physical accuracy of the measurement The correct placement of the wires is often confirmed
equipment, and by the registration algorithm. fluoroscopically, and then the wires are used as guides for

Finally, our results bring into question the suitability of sawing the bone.
a local search method (such as ICP) for surgical registra- Our approach to computer-integrated high tibial os-
tion. On average we obtained good registration results, but teotomy was to plan the correction preoperatively and then
the error distributions showed that both ICP and our robust to use an optically tracked surgical drill to implant the
variant could converge to poor registrations. Kirschner wires into the planned positions. Details of our

planning software (Tso et al., 1998) and in vitro results
(Ellis et al., 1999) have been previously reported. Our in

5 . In vivo clinical experience vitro studies indicated a reduction in error magnitude of
over 50% (p , 0.05).

We have integrated spotlight registration into a custom In a consecutive series of 15 patients, we used our
written image-guided surgical navigation system that has robust registration algorithm to implant the guide wires. A
been used to guide surgeons in performing orthopedic radiologist measured the actual angle between the tibial
extremity procedures. The patients were drawn from plateau and tibial shaft from preoperative and postopera-
existing waiting lists, and freely consented to participate in tive frontal-plane X-ray films. Comparing the achieved
studies approved by the Research Ethics Board of Kings- angle to the planned angle, we found that the maximum
ton General Hospital and Queen’s University. Over the error was628. In one case the superior plane was located
past four years we have performed more than 100 cases of 5 mm more proximal than planned, and in one case the
a wide variety of procedures. computer technique was abandoned because the registra-

Surgical technique in each case was similar. A preopera- tion was deemed inaccurate. The suspected problem in the
tive CT scan was processed, using custom software, to inaccuracy was inadvertent motion of the dynamic refer-
obtain surface models for visualization and registration. ence body attached to the tibial shaft by Schantz pins.
Where appropriate, a preoperative plan was made. Intra-
operatively, a 3D optoelectronic tracking system was used 5 .2. Distal radius osteotomy
(OptoTrak, Northern Digital, Waterloo, Canada). A dy-
namically tracked reference frame was attached to the Fractures of the distal radius are common, constituting
target bone using 4.0 mm Schantz pins and external- approximately 15% of all fractures seen in the emergency
fixation devices (AO/Synthes, Bern, Switzerland). Regis- room. A malunited fracture often leads to pain, reduced
tration data were collected with a preoperatively calibrated, range of motion, reduced strength of the wrist, and arthritic
optically tracked probe. Registration was validated by the changes. Distal radius osteotomy may be performed to
operating surgeon(s), who contacted distinctive anatomical correct such a malunion. Traditional technique requires a
features when possible and ensured that the computed freehand bone cut near the site of the original fracture,
point in the CT scans and the surface models corresponded followed by visual alignment using X-ray fluoroscopy. The
to the anatomy. alignment process is greatly complicated by the soft tissue

This section describes our results for three different contracture that often accompanies malunions and by the
clinical applications: closing-wedge high tibial osteotomy, 2D nature of the X-ray images. Once the desired alignment
distal radius osteotomy, and excision of deep bone tumors. of the distal bone fragment is achieved, a trapezoidal bone
For the osteotomies we report the postoperative alignment graft or substitute is fashioned to fill the bone gap. A
as measured from plain radiographs and, for the wrist, fixation plate is contoured to fit the shape of the radius and
from postoperative functional evaluation. For the tumor secured with bone screws.
excision we report postoperative clinical evaluation and Our approach to computer-integrated distal radius os-
pathology confirmation of navigation accuracy. teotomy required CT scans of both the malunited and

unaffected wrists of the patient. Isosurface models of the
5 .1. High tibial osteotomy two wrists were generated from the scans. The healthy

wrist model was reflected as a mirror image, to serve as a
Closing-wedge high tibial osteotomy is a procedure used template for the correction of the malunion. The template
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and model of the affected wrist were aligned and then the
model was cut with a virtual osteotomy to produce the
proximal and distal fragments of the radius. The distal
radial fragment was aligned with the template of the
healthy distal radius. When the surgeon was satisfied with
the new alignment of the deformed distal fragment, a
model of the fixation plate was placed on the models so
that the plate would hold the bone fragments in place. The
locations of the pilot holes for the plate were saved relative
to the uncut deformed radius.

Intraoperatively, the surgeon drilled the pilot holes with
an optically tracked drill and used the optically tracked
probe to determine the plane of the osteotomy. The distal
fragment was shaved to permit the plate to fit as per the
plan. The plate was then attached to the distal fragment

Fig. 8. A preoperative plan, and postoperative fluoroscopic images, for
and the plate/ fragment assembly was progressively dis- the second patient in the pilot clinical study.
tracted. When the actual holes in the plate matched the
pilot holes in the bone, the alignment was complete and the
defect was filled with viable autologous bone. Details of
our planning software and in vitro results have been unable to tolerate such medication, then the lesion must be
previously reported in (Croitoru et al., 2001). Our in vitro entirely excised.
studies indicated a reduction in error magnitude of over A variety of operative techniques have been recom-
50% (p , 0.01). mended, with en bloc resection traditionally being the

In a consecutive series of six patients, we used the technique of choice (Canale, 1998). En bloc resection of a
computer-integrated technique to perform distal radius substantial mass of bone requires that the defect be filled
osteotomy and conducted detailed postoperative clinical with graft and fixated with wires, staples, screws or plates.
evaluation as described in (Athwal et al., 2002). At an With cortical lesions, there is an appreciable risk of
average follow-up of 25 months the patients underwent subsequent fracture near the operative site.
evaluation that included functional tests. In addition, true We have operated on three consecutive patients (21, 19
posteroanterior and true lateral radiographs of the wrist and 14 years old) diagnosed with osteoid osteoma (Ellis et
were assessed in a blinded fashion by one independent al., 2001). Our computer-integrated technique for this
observer. procedure involved semitransparent rendering of the corti-

All patients were pleased with the surgical outcome and cal bone, for improved visualization of the lesion, and
would have the procedure again in a similar situation. All percutaneous registration for minimally invasive excision.
reported decreased pain and improved functionality and The semitransparent rendering showed the nidus of the
cosmesis. Functionally, the average postoperative range of lesion in bright red (as it appears in the actual bone), and
motion measured 87% of the motion of the contralateral the supralesional cortical bone in light grey. Fig. 9 shows
wrist. The average grip strength was 30 kg compared to 38 the cortical bone and a semitransparent rendering of the
kg in the contra-lateral hand. The radiographic indices used lesion area of the second case in the pilot clinical study.
to assess correction improved dramatically: radial inclina- We registered these cases percutaneously, by intraopera-
tion improved from 128 preoperatively to 218 postopera- tively calibrating a tracked probe that had a 16 gauge
tively (normally 22), ulnar variance improved from17.5 hypodermic needle as its tip. In the second case, spotlight
mm preoperatively to11.9 mm postoperatively (contrala- regions were chosen in the malleoli and on the anterior
teral mean11.5 mm), and volar tilt improved from2 308 aspect of the bulge over the lesion site. Additional data
for dorsal malunions and1 208 for volar malunions were collected percutaneously and in the surgical expo-
preoperatively to 98 (normally 118) postoperatively. Fig. 8 sure. Fig. 10 shows the surface model and the registered
shows representative results. data.

The computer then tracked the drill and superimposed
an image of the drill on the visualization model and on

5 .3. Osteoid osteoma excision axial, sagittal and coronal reformats of the CT scan. Fig.
11 shows a typical intraoperative display; as per radiolo-

An osteoid osteoma is a small, benign, painful osteo- gical convention, the CT axial slices are displayed as
blastic lesion of cortical bone. Osteoid osteoma is most though the patient was prone.
frequently observed in young individuals. If the lesion In each case the osteoma nidus was entirely excised and
causes pain that does not respond adequately to nonsteroi- pathological examination confirmed that the lesion was an
dal anti-inflammatory medications, or if the patient is osteoid osteoma. The surgical wounds were closed with
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collecting these data do not necessarily follow a Gaussian
distribution, so some technique for managing statistical
outliers is needed.

Our work used a specific sequence of robust estimators
to estimate the registration. The first step was to collect
data from generally recognizable landmark regions or
spotlights, and to compute from these initial points an
initial registration. Further data points were then used to
improve the estimate of the registration while minimizing
the influence of points that were far from the model. A
laboratory study, which included fiducial markers as a
ground-truth reference, confirmed that the estimator se-
quence could accurately find a registration with submil-
limeter root-mean-square error in the presence of spurious
data.

Many researchers have described CIS applications that
use ICP withk–d trees for registration purposes (Section

Fig. 9. Surface rendering and semitransparent rendering of the site of an2). We used a perturbation method to obtain a robust initial
osteoid osteoma in the posteromedial right tibia of a 19-year-old female.

estimate of the registration, but the Hausdorff distanceNote the absence of distinctive landmarks, which presented a considerable
(Rucklidge, 1996) or absolute difference distancechallenge for surface-based registration.
(Hagedoorn and Veltkamp, 1999) could also be used to
find an initial robust estimate on a relatively coarse spatial

SteriStrips, and each patient was discharged within 24 h. subdivision. Although our algorithm has proven to be
Each patient had a complete and uneventful recovery, and sufficiently fast for intraoperative use, alternative accelera-
on postoperative evaluation 2 weeks following surgery tion methods (Rusinkiewicz and Levoy, 2001; Greenspan
were pain-free. and Godin, 2001) may also be used. To estimate the

registration, methods such as RANSAC (Fischler and
Bolles, 1981) and LMS (Kumar and Hanson, 1990;

6 . Conclusions Masuda and Yokoya, 1995) algorithms are known to be
robust to a greater fraction of outliers than is ourM-

Registration between the patient and the model is the estimator but the combinatorial time complexity of these
mathematical cornerstone for computer-integrated surgery algorithms is too slow for many intraoperative applica-
guided by preoperative medical images. For orthopedics, tions. Finally, the statistical methods described by Ran-
the principal sources of registration data are derived from garajan et al. (1997), Rangarajan et al. (1999), Chui and
physical contact with bone surfaces and models derived Rangarajan (2000), Granger et al. (2001) and Dellaert
from CT images. Errors introduced by the process of (2001) claim to solve the problem of convergence to a

non-global minimum of the registration objective function
and are robust to statistical outliers. We cannot comment
on their suitability for surgical guidance.

The robust method appeared to be clinically useful in
achieving registration, particularly in cases where the
exposure was very limited or where the anatomical target
had a relatively featureless surface. In a series of 21
clinical cases the registration process failed only once, and
in that case the surgical procedure was successfully
completed by conventional technique. Each of the more
than 100 of the computer-integrated cases performed to
date have had very good or excellent technical outcomes,
which suggests that errors due to registration were negli-
gible. This is consistent with our laboratory findings.

Of particular note were the successful registrations in
the cases of excision of osteoid osteoma from the tibia.
The data were collected percutaneously, by tracking a thin
deformable hypodermic needle that pierced substantialFig. 10. Registration of percutaneously collected points to the distal tibia.
thickness of soft tissue before contacting the bone surface.Note that one point was rejected and was considerably distant from the

bone surface (radius of spheres used to render points is 3 mm). Our robust estimation procedure was able to automatically
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Fig. 11. Image guidance for drilling to intraoperatively localize an osteoma nidus.

detect and discard spurious data, leading to successful initial registration other than by generalizing the concept of
guidance and removal of these painful lesions. The clinical the anatomical landmark.
significance was changing a time-consuming surgical As long as preoperative medical images are used to plan
procedure, usually followed by a lengthy hospital stay and and guide surgical procedures, registration of the patient
recovery, into a minimally invasive procedure with prompt and the images will be needed. Robust registration meth-
discharge of the patient and complete, uneventful recovery. ods may be applicable to many other intraoperative sensing

One observation we made while developing our registra- modalities, such as 3D ultrasound data or fluoroscopic
tion algorithm is that registration is aprocess, not a images, and to applications other than orthopedics. What
mathematical calculation. It is important to consider the this work demonstrates is that robust registration provides
sources of data, how they are collected, what sources of a clinically convenient and effective way to treat a variety
error may occur, and how to compensate for error. It is of problems of bones and joints with a computer-integrated
also critical that the user, here an orthopedic surgeon, be surgical technique.
involved in the ergonomics and the human–computer
interface throughout the development and testing of the R eferences
registration process. Ultimately the surgeon is in control of
the case, so the registration process must be both conveni-Athwal, G.S., Ellis, R.E., Small, C.F., Pichora, D.R., 2002. Outcomes of
ent and must clearly communicate to the surgeon how best computer-assisted distal radius osteotomy. J. Hand. Surg. (accepted for
to proceed. Our experience was that surgeons could readily publication).

¨Bachler, R., Bunke, H., Nolte, L.-P., 2001. Restricted surface matching—identify spotlight regions on images and on patients, which
numerical optimization and technical evaluation. Comput. Aided Surg.contributed to the success in achieving useful registrations.
6 (3), 143–152.
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