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1 Introduction

The registration problem in computer vision is the problem of finding the trans-
formation that best aligns (registers) a model with a data set or best registers
two or more data sets. The goal is to bring the model and the data set or the
multiple data sets into the same coordinate system. Solutions to this problem
are required in many application domains. In industrial inspection, registration
between model and data is necessary for comparing ideal (“nominal”) parts
with manufactured parts so that defects in the manufacturing process may be
identified [32, 33]. In model construction, placing sensor measurements in the
same coordinate system is the necessary prerequisite for building complete mod-
els rather than models dependent only on individual views. In medicine, reg-
istration facilitates treatment monitoring, mixing of sensed data from different
modalities, and application of surgical plans developed off-line [10, 13, 15]. Each
of these applications requires precise and accurate estimates of the transforma-
tion.

The registration problem has many forms. Differences are due to the type
of data, the type of model (if any) and the type of transformation. Exam-
ples include image to image registration for mosaic construction [23, 40, 37],
range data to range data registration for model construction in reverse engi-
neering [3, 19, 29, 35, 9], and model to image registration for tracking, motion
estimation, object recognition or camera calibration [14, 22, 27, 28, 44]. The
particular instance of the registration problem considered here is registering a
three-dimensional model to one or more range data sets as precisely and ac-
curately as possible. This problem, which differs from the range data to range
data registration problem because the model is known in advance and is not
variable, will be what’s meant by the “registration problem”. It has particular
relevance to industrial inspection applications [32].
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Precise and accurate registration requires use of constraints based directly
on the data points. Feature-based techniques, such used in traditional object
recognition and pose determination [8, 12], and methods based on global shape
descriptions [26], such as extended gaussian images, spherical attribute images
[18], or spin images [24], are good for coarse positioning when a prior estimate
of the transformation is not known, but must be followed by point-based regis-
tration for precision and accuracy [18, 24].

The main idea in most point-based registration techniques appears in several
nearly simultaneous papers proposing “iterative closest point” (ICP) algorithms
[4, 7, 32, 46]. ICP algorithms iterate (temporary) matching and pose estimation
steps, specifically (1) finding the closest model point to each data point based
on a current transformation (pose) estimate and (2) revising the pose estimate
based on the collection of matches. Each of these algorithms minimizes a Eu-
clidean distance metric in matching. The pose estimation constraints are either
the Euclidean distance between each matched data and model point [4, 32, 46]
or the Euclidean distance between a data point and a linearization of the model
surface around the matched model point [7, 39]. The latter is called the “normal
distance”. ICP algorithms have been extended to registering volumetric images
and to registering combined range [13] and color images [25]. An alternative
method to ICP algorithms is described in [6, 41], where data to model distance
measures are represented and computed using what’s called an octree spline.
This avoids the need for an explicit matching step, but makes pose estimation
non-linear.

In light of the goal of making registration as precise and accurate as possi-
ble, it should be clear that what’s missing from current point-based registration
techniques are measures of uncertainty in the data. The significance of incor-
porating data uncertainty into estimation problems such as registration may be
seen by examining two simpler problems, each provably equivalent to a special
case of registration (Appendix A).

Multivariate location: The problem is to estimate a location µ from n point
measurements xi, each with an associated covariance matrix Si. The
optimal estimate minimizes the sum of the squared Mahalanobis distances:∑

i

(xi − µ)TS−1i (xi − µ). (1)

This estimate is easily shown to be

µ̂ =
(∑

i

S−1i

)−1 (∑
i

S−1i xi

)
This reduces to the ordinary average only if the covariance matrices are
equal.

Linear regression: Restricting attention to points in two-dimensions, so that
xi = (xi, yi)T , consider the difference between ordinary regression and “or-
thogonal regression”. Mathematically the error metrics to be minimized
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are ∑
i

(yi −mxi − b)2 and
∑
i

(a0 + a1xi + a2yi)2 (2)

respectively, the latter being subject to the constraint a2
1 + a2

2 = 1. (Of
course, the two sets of line parameters may be translated back and forth
except when a2 = 0.) When the error covariance matrices are Si =
diag(0, σ2), minimization of the ordinary regression metric yields an un-
biased (and therefore most accurate) estimate of the line parameters,
whereas minimization of the orthogonal regression metric yields a biased
estimate. The situation is reversed when the error covariance matrices
are Si = diag(σ2, σ2). Different error covariance matrices require different
estimators for unbiased estimates.

In both examples, obtaining the most accurate estimates requires use of mea-
surement error represented as error covariance matrices.

The main questions addressed in this paper are (1) how to incorporate error
covariance matrices into point-based registration algorithms, and (2) what are
the practical consequences of doing so. The first question is addressed by formu-
lating registration as a statistical optimization problem using distance metrics
based on the Mahalanobis distance.1 Two new ICP algorithms arise naturally
when solving this minimization. One is a generalization of current ICP algo-
rithms that use Euclidean distance in the pose refinement step. A second is a
generalization of ICP algorithms that use normal distances in pose refinement.
Octree spline registration algorithms are not easily extended to incorporate mea-
surement error in the data because the octree spline representation depends on
the model only. As a result such algorithms are not considered further here.

The practical consequences of incorporating error covariance matrices into
point-based registration algorithms are two-fold. The first and obviously in-
tended result is more accurate registration. The amount of improvement over
standard ICP algorithms depends on a number of considerations, including the
number and extent of the data points, the magnitude of the noise in the data,
and the object pose itself. The second and somewhat surprising result is two ad-
ditional new algorithms that are simpler and faster algorithm than current ICP
algorithms in the special case that the error covariance matrices are (nearly)
unidirectional. Since the measurement errors of most range sensors are con-
centrated along the optical axis of the cameras [5, 43], these new algorithms
with their improved accuracy and efficiency should generally be preferred over
current ICP algorithms.

2 Problem Formulation

The discussion begins by formulating registration as an optimization problem.
This in turn begins with a discussion of the model, the data, and the transform

1See Chitrai, Weng and Jain for an important but special case solution to the problem of
statistically optimal registration of two data sets.
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Figure 1: The registration problem is finding the rigid transformation best aligns
the model with the data. The transformation is a mapping from the coordinate
system CM in which the model is described into the coordinate system CS in
which the data is acquired.

to be computed.

2.1 The Model and the Data

The model is assumed to be described mathematically in some convenient co-
ordinate system, CM (Fig. 1). This description may be an implicit function,
a parametric model, spline patches, or a triangulated surface mesh. For sim-
plicity in the derivations, the model is assumed to be described implicitly as
the set of pointss p such that f(p) = 0. The resulting algorithms are easily
adjusted for different model representations. In fact, as discussed later, some
offline preprocessing of the model is generally necessary prior to registration.

The data are a set of sensed points from an instance of the object. Assume
there are N data points in the set Q = {qi}, where qi = (xi, yi, zi)T , and each
data point has an associated covariance matrix Si. These points and matrices
are in the sensor coordinate system, CS (Fig. 1). In the case of range data,
the points may be conveniently stored in or converted to an image format (a
“range image”), where each pixel location (u, v) stores a measured point in <3

denoted by q(u, v). A camera projection function, usually perspective or weak
perspective, denoted by P determines the mapping from range points to pixel
locations.

The covariance matrices, Si, which depend on the sensor and the data point
locations, qi, are symmetric and positive semi-definite. It will be important to
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consider the case of Si being singular and even rank 1, which represents the
most extremely anisotropic distribution. Rough approximations to the covari-
ance matrices may be obtained by analyzing the sensing technique and camera
geometry. More complete characterization requires experimental analysis, often
as part of a rigorous calibration process [17]. This analysis will result in a look-
up table mapping sensed point positions to covariance matrices. Sometimes this
mapping may even depend on surface orientation, due to angle of incidence and
reflectivity effects. Such a dependence causes a problem for registration because
surface orientation is not known in advance. A straightforward solution to this
problem is discussed later in the paper.

The registration problem is to find the model-to-data transformation, which
is assumed here to be a rigid transformation described by a rotation R and
translation t. The inverse transformation mapping data-to-model is RT and
−RTt.2 Since the goal is precise registration, it is assumed that initial estimates
of R and t are known or easily provided. These may be obtained by using
application constraints, or by using feature-based or shape description methods,
or, for example, by alignment of 0th and 1st order moments in the model and
in the data.

2.2 Registration as an Optimization Problem

Given a data point and covariance matrix, qi and Si, given a particular model
point p, and given a fixed R and t, the squared Mahalanobis distance between
qi and the transformed model point R p + t is

(R p + t− qi)T Si−1 (R p + t− qi). (3)

When Si is singular, the error vector R p + t − qi must be entirely within the
column space of Si; otherwise the Mahalanobis distance is infinite.

Since the correspondence between data points and the model is not known,
it is important to formulate the Mahalanobis distance in terms of the data point
and the model surface. This results in a constrained minimization:

D2
M (qi, Si; f; R, t) = min

p
(R p + t− qi)T Si−1 (R p + t− qi)

subject to f(p) = 0 (4)

This defines the square Mahalanobis distance between a data point and the
model surface as the minimum Mahalanobis distance over all model surface
points. The “closest” point, which is not made explicit in (4) but will be required
later, is denoted by pi. It depends on the data point and covariance matrix, the
model surface, and the transformation R, t.

Given these definitions, registration becomes the problem of minimizing the
combined square Mahalanobis distances of all data points.

Q({qi, Si}; f; R, t) =
∑
i

D2M(qi, Si; f; R, t). (5)

2For notational convenience, rotations are described using orthonormal matrices. In prac-
tice, any convenient representation may be used [11, Ch. 5].
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This defines the minimization problem we want to solve to estimate R and t. A
formalization and generalization of the problem addressed in current ICP pa-
pers, it involves a two-tiered minimization, first in the Mahalanobis distances of
the individual data points and second in the global transformation parameters.
These correspond to the two iterated ICP steps of matching and pose estimation
described in the introduction.

3 Solving D2
M

The first step to minimizing Q({qi, Si}; f; R, t) is to understand better the data
point to model surface minimization, DM (qi, Si; f; R, t) defined in (4). This
minimization is solved first for linear models and then for general models.

3.1 Linear Models

Linear models (planes in <3 and lines in <2) are of the form

fL(p) = η̂T (p− p0) = 0 (6)

where η̂T is a unit normal and p0 is any fixed point on the model surface.
Incorporating this into (4) and rewriting D2

M as D2
L to signify the specialization

of the model gives

D2
L(qi, Si; η̂,p0; R, t) = min

p
(R p + t− qi)T Si−1 (R p + t− qi)

subject to η̂T (p− p0) = 0 (7)

This is solved by writing the minimization using Lagrange multipliers:

F (p, λ) = (Rp + t− qi)T Si−1 (Rp + t− qi) + 2λη̂T(p− p0). (8)

Taking derivatives with respect to p and λ, equating the results to 0 and 0, and
writing in matrix form yields(

RTS−1i R η̂

η̂T 0

)(
p
λ

)
=
(
RTS−1i (qi − t)

ηTp0

)
(9)

Solving for p results in

p = RT (qi − t) +
η̂T (p0 − RT (qi − t))

η̂T RT Si Rη̂
RT Si R η̂, (10)

where scalar terms have been gathered in the fraction.
Now, define q′i = RT(qi−t) and S′i = RTSiR. These are the data point and its

covariance matrix transformed back into the model coordinate system, though
they do not depend on the model. Using them, (10) simplifies to

p = q′i +
η̂T (p0 − q′i)
η̂TS′iη̂

S′iη̂ (11)
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This gives the point p on the plane fL(p) = 0 minimizing the square Maha-
lanobis distance. From here on, this point will be denoted by pi.

The Mahalanobis distance may now be calculated from (11), thereby solving
(7). Using q′i and S′i this results in

D2
L(q′i, S

′
i; p0, η̂) = (pi − q′i)

T S′i
−1 (pi − q′i)

=
[η̂T (p0 − q′i)]

2

η̂T S′i η̂
, (12)

This distance metric is calculated in model coordinates, whereas (4) is defined
in data coordinates. This is not an issue because the Mahalanobis distance
is a unit-less measure. With quantities described in their original coordinate
systems, this becomes

D2
L(qi, Si; p0, η̂; R, t) =

[η̂T(p0 + RT t− RT qi)]2

η̂T RT Si R η̂
. (13)

In either case, the result is quite simple. Importantly, it does not rely on the
inverse of the covariance matrix, so it is appropriate for singular covariance
matrices (errors along only one or two directions) as well.3 In fact, as the plane
normal Rη̂ approaches the null space of Si, the Mahalanobis distance approaches
infinity.

3.2 General Implicit Models

The solution for linear models will be used as part of an iterative solution for
general models.

The derivation for the general case starts as above by combining the distance
and the constraint in (4) into a Lagrangian form:

F (p, λ) = min
p

[
(Rp + t− qi)TSi−1(Rp + t− qi) + 2λf(p)

]
(14)

Taking derivatives with respect to both p and λ and setting the results equal
to 0 yields

∂F

∂p
= RTS−1i Rp + RTS−1i (t− qi) + λ∇f(p) = 0

∂F

∂λ
= f(p) = 0 (15)

This must be solved iteratively by linearizing f around an initial closest point
estimate, using the linear model solution to obtain an updated estimate, and
repeating until convergence. The Mahalanobis distance at the resulting point is
the solution to (4).

3The derivation above is not a sufficient proof for the case of singular Si, but a careful
proof would be too distracting for our purposes.
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(1) repeat
(2) k = k + 1

(3) p0 = q′i +
η̂Ti,k(pi,k − q′i)

η̂Ti,kS
′
iη̂i,k

S′iη̂i,k

(4) repeat
(5) pi,k+1 = p0 + s(q′i − p0) for s such that f(p0 + s(q′i − p0)) = 0.
(6) if ((qi − pi,k+1)T S−1i (qi − pi,k+1) < (qi − pi,k)T S−1i (qi − pi,k))
(7) break;
(8) else
(9) p0 = (p0 + pi,k)/2;
(10) until ‖pi,k − pi,k+1‖ < ε;
(11) η̂i,k+1 = ∇f(pi,k+1)/‖∇f(pi,k+1)‖
(12) until ‖pi,k − pi,k+1‖ < ε;

Figure 2: Procedure D2
M , an iterative procedure for finding the model surface

point pi minimizing the Mahalanobis distance to the inverse rotated and trans-
lated data point. See the text for discussion of the details. The point and normal
estimates from the final iteration will be denoted pi and η̂i in the algorithm
description.

This iterative solution is not as straightforward as it might first appear. To
make the explanation clear the following notation is used: index the iterations
using k, denote the estimated closest point in iteration k by pi,k, and denote
the associated unit surface normal by η̂i,k. Then, using (11) the updated closest
point is

pi,k+1 = q′i +
η̂Ti,k(pi,k − q′i)

η̂Ti,kS
′
iη̂i,k

S′iη̂i,k (16)

Unfortunately, pi,k+1 will not satisfy f(pi,k+1) = 0 unless pi,k+1 = pi,k or f
is locally linear. Additional steps are generally required in each iteration to
project pi,k+1 onto the model surface and to ensure that the resulting point in
fact reduces the Mahalanobis distance. These steps are built into Procedure D2

M

to find the closest model point to inverse transformed data point q′i. This
procedure is given in Fig. 2 and illustrated in Fig. 3.

Several points about Procedure D2
M require explanation. It assumes pi,k

has been properly initialized for k = 0. Initialization will be considered later
as part of the entire optimization. Next, as set in step (3), p0 minimizes the
Mahalanobis distance on the plane determined by pi,k and η̂i,k, but is not
necessarily on the model surface. Step (5) projects this point onto the model
surface. The direction of projection is along the line through q′i and p0, which
preserves any constraints imposed by singularities in S′i, but, depending on the
model representation, may not be the most efficient direction of search. If the
point found, pi,k+1, does in fact reduce the Mahalanobis distance, it is taken as
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Figure 3: Illustration of Procedure D2
M .

the next point on the model surface, and the inner loop ends. (This will usually
be the case.) Otherwise, the distance between pi,k and p0 is halved and the
inner loop continues. As a final note on Procedure D2

M , it is straightforward
to see that p0 = (p0 + pi,k)/2 still yields a smaller Mahalanobis distance than
pi,k. The reason is that the Mahalanobis distance from q′i to the planar surface
determined by pi,k and η̂i,k is a quadratic function whose unique minimum is
the initial p0. Moving p0 toward pi,k monotonically increase this distance.

Overall, while Procedure D2
M appears complicated, it is in fact no more

complex in form than the matching step of current ICP algorithms. These find
the model point minimizing the Euclidean distance between a data point and
the model surface using a procedure that is a special case of Procedure D2

M . It
is obtained by replacing Si with the 3×3 identity matrix in Procedure D2

M . The
additional cost of Procedure D2

M as written is therefore in computing η̂Ti,kS
′
iη̂i,k

and S′iη̂i,k in step (3) and computing the Mahalanobis distance instead of the
Euclidean distance in step (6). As we will see, these costs are much reduced
when S is less than full rank.

4 Two General Covariance-Based ICP Algorithms

The foregoing iterative procedure minimizing D2
M (qi, Si; f; R, t) for fixed R and

t corresponds to the matching step of current ICP algorithms. It also helps
to frame the problem of minimizing the overall objective function defined in
Equation 5 and repeated here:

Q({qi, Si}; f; R, t) =
∑
i

D2M(qi, Si; f; R, t). (17)
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The natural approach would be to differentiate D2
M (qi, Si; f; R, t) with respect

to the parameters describing R and t. Since evaluating D2
M (qi, Si; f; R, t) itself

requires iterative minimization, this differentiation would necessarily be numer-
ical. While this would result in a gradient descent algorithm that is known to
converge, it would be extremely expensive.

The alternative is to simplify (17) using an approximation to D2
M . This

approximation should be based on the set of (current) nearest model points {pi}.
In an iterative framework, a new estimate of R and t should be computed using
the approximation, and then D2

M should be minimized again to find new model
points pi. This follows exactly the two iterative steps of current ICP algorithms.
Two different approximations are offered below. These approximations result
in two different algorithms, the first a generalization of ICP algorithms that use
point-to-point distance in pose refinement and the second a generalization of
ICP algorithm that use normal distance in pose refinement.

4.1 C-ICP1

The first approximation replaces D2
M (qi, Si; f; R, t) in (17) with the Mahalanobis

distance between qi and the current closest point. The summation in (17)
becomes ∑

i

(R pi + t− qi)T Si−1 (R pi + t− qi). (18)

We refer to the iterative algorithm that uses Procedure D2
M to find the model

surface points pi and uses (18) in pose refinement as C-ICP1 (Covariance-based
ICP, Algorithm 1).

Algorithm C-ICP1 is a generalization of the original Besl-McKay ICP algo-
rithm [4] to use Mahalanobis distances in matching and pose refinement. Like
the Besl-McKay algorithm, convergence of C-ICP1 is easily proved: (1) Maha-
lanobis distances are being reduced at each step (i.e. each time Procedure D2

M

is run and each minimization of (18)), and (2) the model points pi are always
kept on the model constraint surface. There are important disadvantages to
C-ICP1, however. First, like Besl-McKay algorithm, which requires 50 or more
iterations, it will be slow to converge. Second and more important, singulari-
ties in the covariance matrices can not be tolerated. Procedure D2

M adapts to
singularities by ensuring that the error vector R pi + t − qi is entirely in the
column space of Si. Unfortunately, this does not carry over to (18) because as
it is written, simultaneously keeping all error vectors in the appropriate column
spaces as R and t change is not possible.

4.2 C-ICP2

The second approximation, and the one we adopt, is based on linearizingD2
M (qi, Si; f; R, t)

around the model point pi found by Procedure D2
M . The linearization effectively

replaces D2
M (qi, Si; f; R, t) in the summation of (17) with the linear Mahalanobis
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distance, D2
p(qi, Si; pi, η̂i; R, t):

∑
i

[η̂Ti (pi + RT t− RT qi)]2

η̂Ti RT Si R η̂i
. (19)

This linearization of the constraint surface is only used to update estimates
of R and t. These revised estimates are then used to reestimate the closest
model surface points pi via Procedure D2

M , which are in turn used in a new
linearization of the constraint surface.

Before showing how to reestimate R and t from (19), several aspects of the
approximation are important to consider.

• It is immediate from the definition that the approximation error is second-
order. With this in mind we may identify and consider three sources of
significant error caused by the approximation: large data point to model
surface distances, large changes in R and t, and high curvature in the model
surface. The first, caused mostly by sensor measurement outliers, is con-
trolled through robust estimation [16, 31, 34, 38]. The second is controlled
by taking small steps in the minimization of Equation 19 before switching
back to updating the closest points pi using Procedure D2

M . The third,
which is only a significant concern for models with a substantial number
of regions of high curvature, may be controlled by some combination of (a)
small step sizes, (b) down-grading the influence of high-curvature regions
through weighting, and (c) solving registration in a coarse-to-fine manner
used smoothed versions of the model at coarse levels.

• The numerator of each term in (19) is simply the perpendicular distance
from the inversely transformed data point (i.e. transformed back into the
model coordinate system) to the planar surface determined by pi and η̂i.
If the covariance matrices are isotropic, so that Si = σ2iI then the denom-
inator of each term reduces to just σ2

i . In the further simplification that
σi = σ for all data points, the algorithm simplifies to the method proposed
by Chen and Medioni [7].4 This provides a new derivation of these “nor-
mal distance ICP” algorithms in terms of an underlying objective function
to be minimized.

• To understand the expression in the denominator when the noise is not
isotropic, first write Si in terms of its spectral decomposition:

Si =
[
Γ1 Γ2 Γ3

]
diag(σ21 , σ

2
2 , σ

2
3)

ΓT1
ΓT2
Γ3

 ,
where the Γj ’s are the unit eigenvectors (component directions) of Si and

4The only difference is that in the original description, two range data sets were being
registered and the model surface was estimated from one of the data sets.
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Figure 4: When the angle between the model surface normal rotated into data
coordinates and the principle error direction is larger (left) the denominator of
(19) and (20) will be smaller. Conversely, when the angle is smaller (right) the
denominator term will be larger.

σ1 ≥ σ2 ≥ σ3 ≥ 0. Then, it is easily seen that

η̂Ti RT Si R η̂i =
3∑

j=1

(σjΓT
j R η̂i)

2

In other words, the denominator is computed by projecting the rotated
normal onto each component direction and scaling by the component vari-
ance. As σ2/σ1 → 0, the denominator reduces to just the projection onto
the primary error direction. The denominator is therefore larger for ro-
tated normals nearly aligned with the primary error direction and smaller
for rotated normals nearly perpendicular to this direction. See Figure 4.

• Singularities in Si are handled naturally because Si need not be inverted.

4.2.1 Updating R and t from (19)

Updating R and t is most convenient in the model coordinate system. Using the
definitions q′i = RT(qi − t) and S′i = RTSiR as in Section 3.1, the incremental
translation and rotation to be estimated are ∆t and ∆R in∑

i

[η̂Ti (pi + ∆t− ∆RTq′i)]
2

η̂Ti ∆RT S′i ∆R η̂i
. (20)

Using these, the new estimates of rotation and translation are

R ∆R and R ∆R) ∆t + t.

The difficulty in estimating ∆t and ∆R from (20) is the non-linearity caused
by the appearance of ∆R in the denominator. One solution therefore is to ap-
proximate the denominator with η̂Ti S′i η̂, linearizing the estimation problem.
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The approximation introduces a small error in the rotation of η̂i prior to pro-
jecting onto the components of Si (see discussion above and Fig. 4). Making
this approximation, the denominator effectively becomes a weight,

wi = 1/η̂Ti S′i η̂ (21)

and the summation becomes∑
i

wi[η̂
T
i (pi + ∆t + ∆Rq′i)]

2. (22)

Intuitively, this weight corrects the normal distance to be closer to distance
along the principle error direction (Fig. 4). ∆R and ∆t are calculated updated
from (20) using well-known methods. Further refinement of these incremental
estimates may be obtained by recomputing the weights and reestimating ∆t
and ∆R, similar to what’s done in several motion estimation algorithms [42, 45].

A second approach to handling the non-linearity in (20) is to use gradient
descent or a Levenberg-Marquardt procedure. Parameterizing ∆R using a small
angle approximation, the gradient of (20) is straightforward and efficiently com-
putable, especially when evaluated at ∆t = 0 and ∆R = I. Once the gradient
direction is determined, (20) may be evaluated at several steps along the gradi-
ent vector to locate the minimum.

This suggests an overall algorithm with two main phases. The first phase
alternates (a) Procedure D2

M to update the closest model points pi with (b)
the weighted linearization (perhaps run for several reweighting steps) to update
estimates of R and t. After the first phase converges, the second phase replaces
the weighted linearization with the gradient based procedure. This is then run in
conjunction with Procedure D2

M until final convergence. This final convergence
should only require one or two steps of alternating Procedure D2

M (for each data
point) with the gradient procedure.

4.2.2 Initialization

Initialization is an important consideration both when Procedure D2
M is first

invoked at the start of C-ICP2 and in restarting Procedure D2
M after each

refinement to R, t. Given an initial transformation estimate, a simple initial-
ization method is to form a line from each inverse transformed data point q′i
and principle error direction Γ′i,1, and intersect this line with the model sur-
face. Reinitialization of Procedure D2

M following refinement of the transforma-
tion estimate is also straightforward. For non-singular covariance matrices, the
previous matched model point pi serves as an appropriate pi,0. For singular
matrices, if q′i−pi is not in the column space of S′i (with q′i and S′i recomputed
from the new pose), then again the line through q′i in direction Γ′i,1 may be
intersected with the model surface.

4.2.3 Robust Estimation

Robustness to outliers is crucial in registration because measurement errors and
measurements from background surfaces are unavoidable. When reasonable ini-
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tial transform estimates are available, the best choice of robust technique is an
M-estimator (see discussion in [38]), which has the dual advantages of down-
grading or completely eliminating the influence of points with large Mahalanobis
distances, while sacrificing little of the statistical efficiency of square error norms
for points with small residuals. The well-known susceptibility of M-estimators
to “leverage points”, which causes their low breakdown point, is not an issue
here because of the initial pose estimate.

The M-estimator is used in refining the pose estimate, so that the linearized
pose estimation equation becomes∑

i

ρ(
√
wi[η̂

T
i (pi + ∆t + ∆Rq′i)]/σ). (23)

We have effectively used both Cauchy [20] and Beaton-Tukey biweight [2] ρ
functions. Several aspects of this objective function are important to consider

• The “weight” term wi (21) is included in the argument of ρ(·) because it
is part of the distance computation.

• The introduction of the scale term σ may appear strange at first because
Mahalanobis distances are normalized. Data-to-model error distances are
not only caused by measurement errors, however. They are also caused
by registration errors and discrepancies between the model and the actual
object. Initially these errors will be large, but as the algorithm converges
they will be greatly reduced. Hence, the scale parameter σ must be (ro-
bustly [20]) reestimated one or more times during C-ICP2. It must be
fixed before the algorithm is allowed to converge.

• The solution to (23) is based on iteratively reweighted least-squares (IRLS)
[20]. The robust weight function wρ(u) = ρ′(u)/u, where u =

√
wi[η̂

T
i (pi+

q′i)]/σ, is computed for each point based on the current pose and match
and is then used to scale each term in (20). These robust weights are also
used in the gradient phase of Algorithm 2.

With the addition of robust weighting, the description of C-ICP2 is now com-
plete.

5 Algorithms for Unidirectional Errors

Two new registration algorithms may be derived in the special case that the error
covariance matrices are concentrated along a single direction. Unidirectional
errors of this sort are typical of triangulation-based range sensors. Structured
light sensors [1, 21, 36] work by recording black and white patterns of light
projected from a light source and off scene surfaces. By projecting a variety of
patterns, a bit vector may be formed at each pixel which encodes the position of
the scene surface along the backprojection from the pixel. Measurement error
(as opposed to system calibration error), therefore, is predominantly along this
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backprojection. Using more traditional stereo sensors, where depth calculation
depends on point, edge or line locations detected in one or more images, the
ratio of the depth to the intercamera distance predominates in determining the
error distribution. When this ratio is large, which is typical of most sensors, the
error distribution is dominated by the depth direction [5, 30].

Two new algorithms are described here. The first, a specialization of C-
ICP2, is a general method for handling unidirectional errors. This second,
which is substantially different and much faster, depends on having the range
data represented as a range image with an associated projection function P.
These two algorithms are simpler to implement, faster and, for predominantly
unidirectional errors, more accurate than current ICP algorithms.

5.1 C-ICP3

C-ICP3 introduces two simplifications over C-ICP2. The first and most impor-
tant is to replace Procedure D2

M with a much simpler technique. For data point
qi let Γi be the error direction, which means that Si = σ2iΓiΓT

i. Transforming
Γi qi and from data to model coordinates yields Γ′i = RTΓi and q′i = RTqi,
respectively. Then, the model point minimizing the Mahalanobis distance to q′i
must be along the line through q′i in direction Γ′i:

p(u) = q′i + uΓ′.

The minimization in Procedure D2
M therefore reduces to the problem of finding

the smallest |u| such that p(u) = 0. Denoting this point ui, the matching point
is pi = p(ui).

The second simplification is in the denominator of the objective function
of the incremental rotation and translation update equation, (20). Using Si =
σ2iΓiΓT

i yields
η̂Ti ∆RT S′i ∆R η̂i = (σiΓ′i

T
∆R η̂i)

2.

Beyond this, the calculation of ∆R and ∆t is the same as in C-ICP2.
The combination of these two simplifications results in what will be referred

to as algorithm C-ICP3.

5.2 C-ICP4

When the data set is formed into a range image and measurement errors are
concentrated along the lines of sight of the pixel, a more dramatic simplification
of C-ICP2 is possible. The idea behind this arises from reversing the thinking
about the matching process of Procedure D2

M .
Consider a point p on the model surface, and think about finding the closest

data point to p based on the current transformation estimate. Define p′ =
Rp + t. Then, because errors are along the lines of sight, the closest point
to p′ (in a Mahalanobis distance sense) is the point q(u, v) such that (u, v)
is the closest range image pixel to P(p′), the projection of p′ onto the image
plane (Fig. 5). Now, if Γ(u, v) is the line of sight of pixel (u, v) (and the error
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Figure 5: Matching in Algorithm C-ICP4 maps model point p into data coordi-
nate using the current transformation estimate and then projects this onto the
image plane. The matching data point is the point q(u, v) stored at the nearest
pixel, (u, v).

direction for q(u, v)), then the line through q(u, v) in direction Γ(u, v) will
not necessarily pass through p′. Therefore it will not satisfy the singularity
constraints of the error distribution. If the model point is considered as a model
surface patch, however, with transformed normal η′, then this line will pass
through the patch and close to p′. Furthermore, as shown above, if the patch is
planar then p′ suffices as the match to q(u, v), and there is no need to find the
actual closest model surface point. Therefore, p′ can serve as the closest model
point to q(u, v). The approximation error is second-order. The significance of
this is that unlike any of our previous algorithms and unlike any current ICP
algorithm, there is no search involved in this closest point matching process!5

This idea of reversing the roles of model and data to dramatically simplify
the matching process leads to Algorithm C-ICP4, summarized in Fig. 6. In C-
ICP4, the model is discretized into a set of planar patches represented by points
and normals: {(pj , η̂j)}. This computation is done off-line as a preprocessing
step. On-line, given a range image, Z(u, v), registration proceeds with the usual
iterated steps of matching and pose refinement. Matching uses the non-iterative
process described above. Uniqueness in the matching may be enforced by only
allowing the closest model patch for each data point — this is generally not a
problem. Pose refinement requires the solution to a slightly modified version of

5Algorithm C-ICP3 has search in finding the intersection of the error constraint line with
the model surface.
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Off-line compilation of model:
Form a set of planar patches {(pj , η̂j)}, from a regular
sampling of the model surface. Avoid sampling in regions of high
curvature.

On-line: registration
(1) Given a range image Z : (u, v)→ q(u, v).

and an initial transformation estimate R0, t0.
(2) k = 0;
(3) repeat
(4) for each model patch j {
(5) p′j = Rk pj + tk;
(6) (u, v)T = P(p′j);
(7) qj = Z(u, v);
(8) }
(9) Compute pose increments ∆Rk, ∆tk from∑

i

ρ(
√
wi[(η̂

′
i)
T (p′i + ∆t + ∆Rqi]/σ)

as in Algorithm C-ICP2.
(10) Update the pose estimates: tk+1 ← ∆Rk(tk + ∆tk) and Rk+1 = ∆Rk Rk
(11) k + +;
(12) until ( ∆Rk+1 → I3×3 and ∆tk+1 → 0)

Figure 6: Outline of Algorithm C-ICP4, a dramatically simplified registration
algorithm applicable when the range data are stored in image format and mea-
surement errors are predominantly along the lines of sight (backprojection lines)
of the pixels.

(23). With trivial adjustments, this uses the linearization and gradient descent
update techniques from Section 4.2.1 and the robust methods from Section 4.2.3.

This completes the basic description of Algorithm C-ICP4. More details and
variations are considered in what follows.

5.2.1 Discretization of the Model

Model discretization requires predicting the model to data transformation, trans-
forming the model into this predicted viewpoint, and then sampling the model
surface uniformly based on the viewpoint. In effect, this creates a simulated
range image from the model surface, but with surface normals in addition to
points. Together, the model points and normals create a “patch set” {(pj , η̂j)}.
If several substantially different viewpoints are possible, then multiple viewpoint-
dependent patch sets may be created. It is important to note, however, that
within the same “aspect” registration does not depend significantly on the choice
of model viewpoint. The only differences should be the position of the samples
— all other differences are eliminated when the patch set is transformed into
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model surface

δ

η

p

rr

Figure 7: For sample spacing δ on the surface, the approximation error using
a linear patch at model ponit p with radius of curvature r is at most r −√
r2 − (δ/2)2 ≈ δ2/(2r)2.

the sensor coordinate system — and these differences, like differences in pixel
positions within the sensor are irrelevant.

Several further issues in the discretization of the model are significant.

• Model surface sampling density should be controlled by tradeoffs between
the desired level of precision in registration and the computation time.
Exact formulas for the precision are difficult to obtain, aside from the
obvious and unattainable lower bound variance σ2

s/n on the transformed
position of any model surface point. (Here, σ2

s is the variance in the
data and n is the number of matches.) Hence, sampling density should be
determined experimentally based on the model, the sensor, and application
constraints.

• There should be no smoothing of the model surface points and normals
since this smoothing can create bias in registration. If the possibility of
local minima is a concern, then a coarse-to-fine hierarchy of patch sets may
be created with smoothing of the model at coarse levels prior to sampling.

• Even though linear patches (points and normals) are used, the approxi-
mation error is extremely low. Suppose δ is the spacing between model
patches on the model surface and suppose δ is the spacing between data
points when backprojected onto the actual surface. Then, a simple anal-
ysis shows that the maximum error in discretization and in matching is
approximately δ2/(2r)2, where r is the local radius of curvature on the
model surface (Fig. 7). This means higher-order approximations are gen-
erally unnecessary, even for high-precision registration. It does suggest,
however, that points of extremely high curvature on the model such as
sharp edges and blending regions, be avoided in the patch set of C-ICP4.
This is desirable anyway, because these are often regions of large sensor
error and places where model and actual objects are likely to disagree.
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5.2.2 Convergence

A formal convergence proof is difficult to obtain for Algorithm C-ICP4. The
problems are two-fold: changes in the transformation estimate will produce
changes in matching of patches to data points, and because the patches are linear
approximations these changes are not in a strict sense “smooth”. The above
arguments about the approximation error, however, may also be applied to show
that the effects of any changes in matching are extremely small. Furthermore, as
the incremental changes ∆Rk and ∆tk become small — inducing changes in p′j
significantly less than δ — there are fewer and fewer changes to the matches. As
a result, with proper initialization, convergence is not a problem in a practical
sense.

6 Experimental Results

[Author’s note: these are just plans. The experiments should be done in a week
or so.]

State that these algorithms (C-ICP4, in particular) are being used in prac-
tice, but the real test must come through simulation because ground truth is
unknown. (Could put in GR&R tests for precision, though?) Compare C-ICP2
and C-ICP4 to a more traditional point-based algorithm. Assign σ3 = σ2 and
vary the ratio σ2/sigma1. Consider the effects of variation in surface orienta-
tion, width of the surface, number of points, and magnitude of σ1. Use a noise
model that varies σ1 in depth.

7 Summary and Conclusions

This paper has addressed the problem of registering a three-dimensional model
with a range data set for applications where precision and accuracy are crucial.
The main innovation is the formulation of registration as a statistical optimiza-
tion problem using as an objective function the summed, squared Mahalanobis
distances between data points and the transformed model surface. This builds
measurement uncertainty in the form of error covariance matrices into the reg-
istration problem formulation. Two algorithms, C-ICP1 and C-ICP2, which
generalize current point-based registration algorithms, arose in solving the reg-
istration optimization problem. Two further algorithms, C-ICP3 and C-ICP4,
were derived for the special case of covariance matrices dominated by a single
error direction. This is especially relevant to registration against range data
obtained using triangulation-based sensors. The measurement errors for data
from these sensors tends to be concentrated along the backprojection lines for
each pixel.

Algorithm C-ICP4 is the most important in practice. It was derived for
triangulation-based range sensors where the data are (or may be) stored as a
dense range image. It reverses the role of model and data in the matching pro-
cess, and in doing so makes matching particularly simple, requiring no iterative
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closest point search. As a result it is simpler, faster and more accurate than
current registration algorithms.

The main limitation of the algorithms derived here is that the covariance
matrices are assumed to be known in advance. This is a problem when mea-
surement error depends on surface orientation because this orientation is not
known unless it is estimated from the data or taken from the registered model.
One solution is to run an algorithm such as C-ICP4 to convergence and then
use surface orientations for the registered model to reinitialize the covariance
matrices. Once this is complete the more general algorithm C-ICP2 may be
used to refine the transformation estimate. Practically, this seems unlikely to
be a major concern, (perhaps reference back to experimental results) although
this intuition will need to be confirmed experimentally,

Finally, the covariance-base registration algorithms may be extended triv-
ially to handle multiple range data sets. If the transformation between these
data sets is known in advance, for example by rotating the object using a high-
precision rotary stage, the multiple data sets provide simultaneous constraints
on the position of the object within the stage. If the transformation between
data sets is not known, registration of the model against each data set deter-
mines the calibration transformations between them.

Appendix A: Special Cases of Registration

This appendix shows that multivariate locations and linear regression are special
cases of registration estimation. This means that known results about bias in
these estimation problems carry over to registration. The derivations build
on the problem formulation in Equation 5 and the closest point and distance
equations for linear models developed in Section 3.1.

The multivariate location problem is obtained from registration by choosing
the model

f(p) = p = 0.

In doing this, rotation becomes irrelevant and Equations 4 and 5 reduce to∑
i

(t− qi)T Si
−1 (t− qi),

which is equivalent to (1).
The linear regression problem is obtained from registration for linear models.

For linear models, the objective function (5) reduces to∑
i

[η̂T (p0 + RT t− RT qi)]2

η̂T RT Si R η̂
. (24)

This may be simplified much further by choosing the plane z = 0, which makes
p0 = 0 and η̂ = (0, 0, 1)T . In doing this, restrict attention to <2, write

R =
(

cos θ − sin θ
sin θ cos θ

)
,
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and define γ = (cos θ,− sin θ) · t. Making all these substitutions in (24) and
simplifying yields the optimization equation∑

i

(xi sin θ − yi cos θ + γ)2

[− sin θ, cos θ] Si [− sin θ, cos θ]T
. (25)

With Si = diag(0, σ2), this is equivalent to∑
i

(xim− yi + b)2

where m = tan θ, b = γ/ cos θ, and the scale term has been dropped. With
Si = diag(σ2, σ2), this is equivalent to∑

i

(xi sin θ − yi cos θ + γ)2.

These are the ordinary and orthogonal regression objective functions as dis-
cussed in the introduction (2).
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