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Landmark-Based Elastic Registration Using
Approximating Thin-Plate Splines

K. Rohr*, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese, and M. H. Kuhn

Abstract—We consider elastic image registration based on a set
of corresponding anatomical point landmarks and approximating
thin-plate splines. This approach is an extension of the original in-
terpolating thin-plate spline approach and allows to take into ac-
count landmark localization errors. The extension is important for
clinical applications since landmark extraction is always prone to
error. Our approach is based on a minimizing functional and can
cope with isotropic as well as anisotropic landmark errors. In par-
ticular, in the latter case it is possible to include different types of
landmarks, e.g., unique point landmarks as well as arbitrary edge
points. Also, the scheme is general with respect to the image di-
mension and the order of smoothness of the underlying functional.
Optimal affine transformations as well as interpolating thin-plate
splines are special cases of this scheme. To localize landmarks we
use a semi-automatic approach which is based on three-dimen-
sional (3-D) differential operators. Experimental results are pre-
sented for two–dimensional as well as 3-D tomographic images of
the human brain.

Index Terms—Anatomical landmarks, image matching, segmen-
tation, splines.

I. INTRODUCTION AND MOTIVATION

In neurosurgery and radiotherapy planning it is important to
either register images from different modalities, e.g., magnetic
resonance (MR) and X-ray computed tomography (CT) images,
or to match images to atlas representations. If onlyrigid trans-
formations are applied, then the accuracy of the resulting match
often is not satisfactory with respect to clinical requirements. In
general,nonrigid transformations are required to cope with the
variations between the datasets. A special class of general non-
rigid transformations areelastic transformations which allow
for local adaptation and are constrained to some kind of con-
tinuity or smoothness.

This contribution is concerned with elastic registration of
medical image data based on a set of corresponding anatomical
landmarks. Such a landmark-based approach comprises three
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steps: 1) extraction of landmarks in the different datasets;
2) establishing the correspondence between the landmarks; and
3) computing the transformation between the datasets using
the information from 1) and 2). Among the different types
of landmarks (points, lines, surfaces, and volumes) we here
consider point landmarks.

Previous work on point-based elastic registration has concen-
trated on a) selecting the corresponding landmarks manually
and on b) using an interpolating transformation model (e.g., [2],
[7], and [11]). The basic approach draws upon thin-plate splines
or other splines and is computationally efficient. However, an
interpolation scheme forces the corresponding landmarks to ex-
actly match each other. The underlying assumption is that the
landmark positions are known exactly. In real applications, how-
ever, landmark extraction is always prone to error.

Therefore, to take into account these landmark localization
errors, we propose an approximation scheme, where the cor-
responding thin-plate splines result from a minimizing func-
tional [13]–[15]. With this approach it is possible to individually
weight the landmarks according to their localization uncertainty
and thus to control the influence of the landmarks on the regis-
tration result. The localization uncertainties can be character-
ized either by scalar weights or, more generally, by weight ma-
trices representing landmark error ellipsoids. In the latter case,
anisotropic errors can be taken into account. This extension al-
lows to include not only “normal” point landmarks, which have
a unique position in all directions. In addition, we can include
“quasi-landmarks” which are not uniquely definable in all direc-
tions, e.g., arbitrary edge points. Such landmarks are used, for
example, in the reference system of Talairach [16] to define the
three-dimensional (3-D) bounding box of the human brain. The
incorporation of such landmarks is important since normal point
landmarks are hard to define, for example, at the outer parts of
the human head. To provide the elastic registration scheme with
landmarks we use a semi-automatic procedure which is based on
3-D differential operators. Algorithms for landmark localization
are important for clinical applications since manual selection of
landmarks is time-consuming and often lacks accuracy.

Approximation schemes for point-based elastic registration
have so far not been a focus of research. Bookstein [3] uses a
linear regression model and a technique called “curve décol-
letage” to relax the interpolation condition. This approach has
not been related to a minimizing functional with respect to the
searched transformation and has only been applied to two–di-
mensional (2-D) synthetic data [simulated positron emission to-
mography (PET) images]. Recently, Christensenet al.[5] intro-
duced a hierarchical approach to image registration combining
a landmark-based scheme with an intensity-based scheme using
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a fluid model. The landmark scheme is based on the linear elas-
ticity operator and the applied splines are different from thin-
plate splines. Another difference to our approach is that the non-
affine part of the transformation is separated from the affine part
in their functional. While the stated functional allows to treat
anisotropic errors in one of the two images to be registered, in
their application only equal isotropic errors have been included.
Finally, we mention the intensity-based approach of Geeet al.
[8], which allows to integrate isotropic landmark errors. This
approach, however, is not based on an analytic solution of the
underlying functional but solves it numerically by applying the
finite-element method (FEM), which is computationally much
more expensive.

The remainder of this contribution is organized as follows.
First, we briefly review the original thin-plate spline interpola-
tion scheme and then we describe an extension to an approxi-
mation scheme. After that, we introduce a semi-automatic ap-
proach to the localization of 3-D anatomical point landmarks.
Experimental results are presented for 2-D as well as 3-D tomo-
graphic images of the human brain.

II. A PPROXIMATING THIN-PLATE SPLINES FORELASTIC IMAGE

REGISTRATION

In this section, we first describe the interpolating thin-plate
spline approach in the general context of registering-dimen-
sional image data. Then, we introduce an extension of this ap-
proach to an approximation scheme, which is based on the math-
ematical work of Duchon [6] and Wahba [20]. With this scheme
it is possible to incorporate isotropic as well as anisotropic land-
mark errors.

A. Interpolating Thin-Plate Splines

Thin-plate spline interpolation can be stated as a multivariate
interpolation problem: Given a numberof corresponding point
landmarks and in two images of dimension
, find a continuous transformation within a

suitable Hilbert space of admissible functions, which 1) min-
imizes a given functional and 2) fulfills the inter-
polation conditions

(1)

Bookstein [2] proposed the use of thin-plate spline interpolation
for point-based registration and applied this scheme to 2-D im-
ages. Application to 3-D image data has been reported in Evans
et al. [7], for example. With this approach the minimizing func-
tional represents the bending energy of a thin plate separately
for each component of the transformation .
Thus, the functional can be separated into a sum of similar
functionals each of which only depends on one component
of . Therefore the problem of finding can be decomposed
into problems.

In the case of -dimensional images and for an arbitrary order
of derivatives in the functional we have

(2)

where the single functionals read as

(3)

according to Duchon [6] and Wahba [20] with being positive
integers. The functional is invariant under similarity transforma-
tions. Note, that for the special case of 2 we obtain
the functional originally used in [2].

Let a set of functions span the space of all
polynomials on up to order , which is the nullspace
of the functional in (3). The dimension of this space is

and must be lower than. This
condition determines the minimum number of landmarks, e.g.,
for 2 the number of landmarks must be larger than
three. The solution of minimizing the functional in (3) can now
be written in analytic form

(4)

with basis functions depending on 1) the dimension
of the domain; 2) the order of the derivatives in the functional;
and 3) the Hilbert space of admissible functions. Choosing
the space of functions on for which all partial derivatives
of total order are square integrable, i.e., are in , this
results in the basis functions [see (5) at the bottom of the page.]
with as defined in Wahba [20]. Note, that the basis func-
tions span an -dimensional space of functions that
depend only on the landmarks of the first image. For

2 we have the well-known function
and the nullspace is spanned by 1,

, and .
To compute the coefficients and

of the analytic solution (4) we have to solve the
following system of linear equations:

(6)

where , and is the column
vector of one component of the coordinates of the landmarks

of the second image. The condition represents

even positive integer
otherwise

(5)
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the boundary conditions and ensures that the elastic part of the
transformation is zero at infinity.

B. Extension from Interpolation to Approximation

With the interpolation approach described above the land-
marks are matched exactly. This implicitly assumes that the
landmark positions are known exactly. If we want to take into
account landmark localization errors, we have to extend this ap-
proach by weakening the interpolation condition (1). This can
be achieved by introducing a quadratic approximation term in
the functional (2) which then reads as

(7)

Within the field of computer vision, functionals of this type
have previously been considered for the reconstruction of sur-
faces from sparse depth data, i.e., for finding a mapping

(e.g., [17]). Aradet al. [1] recently used a 2-D ap-
proximation approach of this kind to represent and modify fa-
cial expressions.

The first term of the functional in (7), the so-called data term,
measures the sum of the quadratic Euclidean distances between
the transformed landmarks and the landmarks . Each dis-
tance can be weighted by the variancesrepresenting land-
mark localization errors. If, for example, the variance is high,
i.e., landmark localization is uncertain, then the influence on
the overall approximation error is weighted low. Note, that we
have only one parameter to represent the localization uncertain-
ties of two corresponding landmarks. Thus, we have to combine
the variances of corresponding landmarks. In our case, we use
the sum of both variances, (see also below).

The second term in (7) measures the smoothness of the
resulting transformation. Hence, the minimization of the func-
tional yields a transformation which 1) approximates the
distance between the landmark sets and 2) is sufficiently smooth.
The relative weight between the approximation behavior and
the smoothness of the transformation is determined by the reg-
ularization parameter . If is small, we obtain a solution
with good adaption to the local structure of the deformations
and if is large, we obtain a very smooth transformation with
little adaption to the deformations. There are two limiting cases:
For we obtain the original interpolating thin-plate spline
transformation, and for we have a global polynomial of
order up to , which has no bending energy at all. Choosing

2 in the latter case results in an affine transformation.
Thus, for 2 and general values of , we obtain an
approximating elastic transformation the behavior of which
lies in the range between the two extremes of the interpolating
thin-plate spline transformation and an approximating affine
transformation.

The interesting fact is that the solution to the approximation
problem (7) can also be stated analytically and consists of the
same basis functions as in the case of interpolation (Duchon [6]
and Wahba [20]). The computational scheme to compute the
coefficients of the transformation is nearly the same

(8)

(a) (b)

(c) (d)

Fig. 1. (a)–(d) Performance of approximating thin-plate splines visualized
by deforming a regular grid: Two different landmark sets represented by the
small black dots and the larger grey dots, interpolation (� = 0), approximation
(intermediate value of� = 0.001), and nearly affine approximation (large
value of� = 0.1).

where

... (9)

In comparison to the interpolating case, we only have to add
in the diagonal of the matrix . As a by-product,

this results in a better conditioned linear system of equations
yielding a more robust numerical solution. To refer to these
splines resulting from the stated approximation problem we here
use the termapproximating thin-plate splines. Note, that in the
mathematical literature generally the termthin-plate smoothing
splineis used (e.g., [20]).

The transformation behavior of the thin-plate spline approx-
imation scheme can be visualized by deforming a regular grid.
Fig. 1 shows an example for different values ofwhile set-
ting 2 and assuming equal weights 1. In Fig. 1(a)
are shown the landmarks of the first and second image marked
on a regular grid by the small black dots and the larger grey
dots, respectively. Fig. 1(b) shows the transformation result for

0, which is the case of thin-plate spline interpolation, where
the landmarks are matched exactly. For an intermediate value of

0.001, we obtain an approximation behavior with generally
smaller local deformations [Fig. 1(c)]. A much larger value of

0.1 yields a nearly pure affine transformation with hardly
any local deformations [Fig. 1(d)].
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C. Incorporation of Anisotropic Landmark Errors

The approximation scheme described above uses scalar
weights to represent landmark localization errors. This, how-
ever, implies isotropic localization errors and is only a coarse
error characterization. Generally, the errors are different in dif-
ferent directions and thus are anisotropic. A further extension
of the approach from above is obtained by replacing the scalar
weights with weight matrices representing anisotropic
landmark localization errors. For 3-D images, for example,
the weight matrices are 3 3 covariance matrices. Now the
functional reads as

(10)

Indeed, also for this generalized functional the solution can be
stated in analytic form with the same basis functions as before
(see Wahba [20] and Wang [21] for a theoretical treatment of
such functionals). The computational scheme to compute the
coefficients of the transformation has the same structure as
(8), however, a separation into the componentsof the trans-
formation is no longer possible. Now, the weighting matrix
in (8) represents the covariance matrices , of the
landmarks through

... (11)

which is a block-diagonal matrix. Note, that the mathematical
work in, e.g., [21], treats the more general case of being a
dense matrix. In medical image registration, however, a block-
diagonal matrix is sufficient. While the errors for a single land-
mark are generally correlated, it can well be assumed that there
is no correlation betweendifferentlandmarks.

Note also, that the represent the localization errors of
two corresponding landmarks. Thus, to end up with one matrix
we have to combine the covariance matrices of corresponding
landmarks. If we assume that the corresponding two covariance
matrices depend only slightly on the elastic part of the trans-
formation, then we can combine these matrices by applying
a linear transformation which allows for rotation and scaling,
i.e., , where the matrix can be
computed based on all landmarks. If we can further assume that
the images have approximately the same orientation and scale
then we can simply add the two covariance matrices. The other
matrices in the linear system of (8) are given by ,
where and is the identity matrix, and

, where .
With the extended approximation scheme it is possible to in-

clude different types of 3-D point landmarks, e.g., “normal”
point landmarks as well as “quasi-landmarks.” Normal point
landmarks have a unique position and low localization uncer-
tainties in all directions. An example for quasi-landmarks are
arbitrary edge points. Such points are not uniquely definable in
all directions, and they are used, for example, in the reference

system of Talairach [16] to define the 3-D bounding box of the
human brain. The incorporation of such landmarks is important
since normal point landmarks are hard to define, for example,
at the outer parts of the human head.

Note, that the above introduced approximation scheme using
weight matrices is also a generalization of the work in Book-
stein [4], where the interpolation problem is solved while the
landmarks are allowed to slip along straight lines within a 2-D
image. Actually, this is a special case of our approximation
scheme since for straight lines the variance in one direction is
zero whereas in the perpendicular direction it is infinite.

III. SEMI-AUTOMATIC LOCALIZATION OF ANATOMICAL

LANDMARKS

Anatomical point landmarks in 3-D tomographic datasets are
usually localized manually. Generally, this procedure is diffi-
cult, time-consuming, and often lacks accuracy. To improve on
this, we use a semi-automatic scheme in conjunction with 3-D
differential operators. In comparison to an automatic procedure,
such a semi-automatic approach has the advantage that the user
has the possibility to control the results (“keep-the-user-in-the-
loop” paradigm).

As 3-D differential operators we apply 3-D extensions of 2-D
corner operators (Rohr [12]). Recently, we have evaluated a
larger number of 3-D differential operators using different per-
formance criteria (Hartkenset al. [9]). The investigated opera-
tors are based on either first or first- and second-order partial
derivatives of an image. Examples of the latter type of operators
are based on the mean and Gaussian curvature of isocontours.
These operators are related to approaches which utilize curva-
ture properties of isocontours for detecting 3-D crest or ridge
lines. In comparison to the 3-D operators in [12] and [9] the
crest-line based approach of Thirion [18] requires third-order
image derivatives to determine extremal points. In our evalua-
tion study in [9] it turned out that the operators based on only
first-order image derivatives yield the best results. Therefore,
we use them in our application.

A. Semi-Automatic Scheme for Landmark Localization

To localize a certain 3-D anatomical point landmark we apply
the following user-interaction scenario: 1) the user specifies a
region of interest (ROI) together with an approximate position
(e.g., the center of the ROI); 2) a 3-D differential operator is
applied yielding landmark candidates within the selected ROI;
and then 3) the user selects the most promising candidate. To
simplify the selection procedure, the landmark candidates may
be ordered either based on their operator responses or on their
distances to the manually specified position.

The anatomical landmarks we use are landmarks on the skull
(e.g., tip of external protuberance, saddle point on the zygomatic
bone, and saddle point on the mastoid process) as well as land-
marks on the ventricular system (e.g., tips of frontal, occipital,
and temporal horns, topmost concavity of fourth ventricle roof,
and tip between medulla oblongata and pons). These landmarks
are visible both in MR as well as CT images and can be geomet-
rically characterized as tips or saddle points.
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B. Three-Dimensional Extensions of Corner Detectors

For landmark detection we apply 3-D differential operators
which are extensions of existing 2-D corner detectors used to de-
tect points of high intensity variations. These operators are based
on only first-order partial derivatives of an image. Therefore,
these operators are computationally efficient and do not suffer
from instabilities of computing high order partial derivatives.
Let the matrix denote the averaged dyadic
product of the 3-D grey-value gradient ,
then we can define the following three operators [12]:

(12)

Local maxima of these operators serve as landmark candidates
within the above described semi-automatic scheme (for details,
see [12]).

IV. EXPERIMENTAL RESULTS

We now present experimental results of applying the approx-
imating thin-plate spline registration scheme to 2-D as well as
3-D image data. In the experiments we treat the cases of equal
isotropic landmark errors, individual isotropic errors, as well as
individual anisotropic errors.

A. Two-Dimensional Data

Within the task of MR-CT registration we here consider the
application of correcting patient-induced susceptibility distor-
tions of MR images. We have acquired two sagittal MR brain
images of size 256 256 pixels with typical susceptibility
distortions of a healthy human volunteer. In our experiment
we used a high-gradient MR image as “ground truth” (instead
of clinically common CT images) to avoid exposure of the
volunteer to radiation. Both turbo-spin echo images have
consecutively been acquired on a modified Philips 1.5-T MR
scanner with a slice thickness of 4 mm without repositioning.
Therefore, we are sure that we actually have identical slicing in
space. Using a gradient of 1 mT/m and 6 mT/m for the first and
second image, then leads to a shift of ca. mm and ca.

mm, respectively.
Within each of the two images we have manually specified

20 point landmarks [see Fig. 2(a), (b)]. To simulate large land-
mark localization errors, one of the landmarks in the second
image (no. 3) has been shifted about 15 pixels away from its
true position. This large shift has been chosen for demonstration
purposes. Note, however, that manual localization can actually
be prone to relatively large errors. Fig.2 shows the results of
interpolating thin-plate splines [Fig.2(c)] versus approximating
thin-plate splines setting 2 and using equal scalar
weights 1 [Fig.2(d)]. For the regularization parameter, we
have used a value of 50. Note, that for a comparison of
this value with the values used in the synthetic experiment in
Fig. 1, one has to keep in mind that there a (normalized) image
dimension of 1 1 pixels has been used. Thus, we have to nor-
malize the regularization parameter to the current image dimen-
sion. Doing this, we obtain 50/(256 ) 0.0008, which
corresponds to the intermediate value ofin Fig. 1. Each re-
sult in Fig. 2(c), (d) represents the transformed first image. It

can be seen that the interpolation scheme yields a rather unreal-
istic deformation since it forces all landmark pairs, including the
pair with the simulated localization error, to exactly match each
other. Using the approximation scheme instead yields a more
accurate registration result. In the difference image of the two
results in Fig. 2(e) we see that the largest differences occur at the
shifted landmark no. 3 which is what we expect. The increased
accuracy of the approximation scheme can also be demonstrated
by computing the distance between the grey-value edges of the
transformed images and those of the second image. In our case,
we applied a distance transformation to computed grey-value
edges. The results for the marked rectangular image parts in
Fig. 2(c), (d) can be seen in Fig. 2(f), (g). Here, the grey values
represent the registration error, i.e., the brighter the larger is the
error. In particular at the marked circular areas, which indicate
the grey-value edges perpendicular to the simulated shift, we see
that the registration accuracy has increased significantly.

B. Three-Dimensional Data

Next, we show experimental results of applying the approx-
imating thin-plate spline approach to 3-D atlas data. In our ex-
periment we have simulated nonlinear deformations of the dig-
ital SAMMIE atlas (Hübneret al. [10]). This 3-D human brain
atlas consists of 110 slices each of 270346 pixels resolution.
One slice is shown in Fig. 3(a). Different anatomical structures
are labeled with different gray values. The deformed atlas with
overlaid contours from the original atlas is shown on the right.
It can be seen that the deformations are relatively large [see also
the enlarged sections in Fig. 4 (a), (b)]. For the deformation we
used a nonlinear function that depends on the angle between
the top-left and the bottom-right diagonal of the image, with the
largest deformation in the direction of the bottom-left diagonal
of the image. Note, that the simulated nonlinear deformation
does not lie within the function space of thin-plate splines or
polynomials. To register the deformed atlas with the original
atlas, we have manually specified 34 homologous landmarks
and have added Gaussian noise to the landmark positions such
as to simulate typical localization errors. A different noise level
has been chosen for each landmark, with standard deviations

in the range between 0.5 and 3.5 voxels. For our experiment
this resulted in displacements between 0.5 and 7 voxels which
are to be expected for manual landmark localization. Fig. 4(d)
shows the result of the approximating thin-plate spline approach
( 2 and 3) in comparison to an optimal affine trans-
formation (limiting case of approximating thin-plate
splines) [Fig. 4(c)]. For the scalar weights we have used values
in accordance with the simulated noise levels. Note, that with
both transformation functions we have used the same input in-
formation consisting of the positions of the landmarks as well as
their localization uncertainties (this is analogous to the experi-
ment above). However, as can be seen, the registration result
with approximating thin-plate splines is significantly better in
comparison to an optimal affine transformation, particularly in
the lower part of the image.

We have also applied our approach to the registration of 3-D
MR and CT images. The MR dataset consists of 120 axial slices
of 256 256 resolution with an intensity range of 0–299, while
the CT dataset consists of 87 axial slices of 320320 res-
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Fig. 2. Two-dimensional MR images of the same patient with marked landmarks. First, (a) low-gradient image and second (b) high-gradient image.
Two-dimensional registration result (transformed first image): (c) Interpolating thin-plate splines and (d) approximating thin-plate splines using equal scalar
weights. (e) Difference between the two registration results. Registration errors for the marked image parts in (c) and (d) using (f) interpolating thin-plate splines
and (g) approximating thin-plate splines using equal scalar weights.

olution with an intensity range of 0–3207. The images have
been acquired from the same patient [see Fig. 5 (a), (b) for
slices 34 and 38 of the original images, respectively]. In this ex-
ample, the landmarks have been localized semi-automatically

using the 3-D differential operator in (12). For regis-
tration we have applied the approximating thin-plate spline ap-
proach with incorporated weight matrices as given in (10) using

2 and 3. The weight matrices have been specified in
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(a) (b)

Fig. 3. (a) Original and (b) analytically deformed 3-D human brain atlas (slice
45 of the SAMMIE atlas).

(a) (b)

(c) (d)

Fig. 4. (a) Section of the 3-D human brain atlas and (b) 3-D registration result
using individual scalar weights. (c) Optimal affine approximation. (d) Thin-plate
spline approximation.

the following way (Rohr [13]). In a local 3-D window around
the detected landmark we analyze the local grey-value varia-
tions and estimate the minimal localization uncertainty for this
point which is given by the Cramér–Rao bound (van Trees [19]):

, where denotes the variance of addi-
tive white Gaussian image noise, the number of voxels in
the local 3-D window, and is the averaged
dyadic product of the image gradient. In our case, we used a
window size of 5 5 5 voxels. From the estimated covari-
ance matrices we can compute the 3-D error ellipsoids with
principal axes , and . Our results show that the esti-
mated error ellipsoids are well adapted to the local structure of
the image. For a landmark with high intensity variations the lo-

calization uncertainty is low and vice versa. Note, that the in-
corporated covariance matrices represent lower bounds for the
localization uncertainties. An alternative approach would be to
exploit anatomical knowledge about the localization uncertain-
ties of landmarks. In general, these uncertainties are different
and higher (or at most equal) in comparison to the lower bounds.
However, since currently we have no such knowledge about the
landmarks we prefer to use the lower bounds. An advantage
of our approach is that we can incorporate different types of
landmarks, i.e., besides unique point landmarks we can also in-
corporate quasi-landmarks, e.g., arbitrary edge points in 3-D.
For such points the localization uncertainties in different direc-
tions differ largely. Below, we report on an example of incorpo-
rating such types of landmarks. For the current example of 3-D
MR-CT registration we have used only unique point landmarks.
For all landmarks the corresponding covariance matrices have
been estimated automatically from the image data as described
above. Fig. 5(c) shows the registration result for slice 38 by su-
perimposing 3-D Canny edges of the CT image on the trans-
formed MR image. It can be seen that the registration accuracy
is rather good. We here have used a value of 3000 which
corresponds to a normalized value of 0.0004 (using the
average dimension of both images). However, for these datasets
it turns out that the registration accuracy is nearly independent
of the parameter. Thus, in the case when the distortions of the
MR image can be assumed to be small, an optimal affine trans-
formation seems to be sufficient.

In the last example, we demonstrate the application of the
approximating thin-plate spline approach to the registration of
3-D MR images of different patients. The datasets consist of
179 236 165 and 177 245 114 voxels, respectively
Also, with this example, we have used 2 and 3,
and the point landmarks have been localized semi-automatically
using the 3-D differential operator in (12). The used
point landmarks are the topmost concavity of the fourth ven-
tricle, the tips of the frontal ventricular horns , the tips of
the temporal ventricular horns , the saddle points at the zy-
gomatic bones , the genu of corpus callosum, the upper
junction at the pons, and the lower junction at the pons. Three
of these landmarks can be found in both hemispheres which has
been indicated by . Additionally, we here have incorpo-
rated quasi-landmarks, namely the 3-D bounding box landmarks
of the brain as used in the reference system of Talairach [16] as
well as two landmarks at the top of the ventricular system. The
six bounding box landmarks in [16] are the uppermost point
of the parietal cortex, the lowest point of the temporal cortex,
the most anterior point of the frontal cortex, the most posterior
point of the occipital cortex, the most lateral point of the left
parieto-temporal cortex, and the most lateral point of the right
parieto-temporal cortex. The quasi-landmarks have been local-
ized manually. In summary, we have used ten normal point land-
marks and eight quasi-landmarks. For all landmarks (normal
and quasi-landmarks) the covariance matrices have been esti-
mated automatically from the image data as described above. As
above in the MR-CT example we have used for the regulariza-
tion parameter a value of 3000, which here corresponds to a
normalized value of (using the average dimen-
sion of both images). Fig. 6(b) shows that we generally obtain a
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(a) (b) (c)

Fig. 5. Three-dimensional (a) MR and (b) CT datasets of the same patient (slices 34 and 38, respectively). (c) Three-dimensional registration resultusing
approximating thin-plate splines and estimated 3-D covariance matrices (slice 38).

(a) (b)

Fig. 6. Three-dimensional registration result (a) using interpolating thin-plate
splines, normal landmarks, and quasi-landmarks and (b) using approximating
thin-plate splines, normal landmarks, quasi-landmarks, and estimated 3-D
covariance matrices (slice 67).

good registration result while some deviations can be observed
at the bottom-left. The registration accuracy is improved in com-
parison to using interpolating thin-plate splines in Fig. 6(a). This
can be seen, for example, at the ventricular system.
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