Learning 3D Mesh Segmentation and Labeling

Evangelos Kalogerakis Aaron Hertzmann

E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010
Karan Singh
University of Toronto

M head Marm
H torso ] ler}s
I upper arm Wbridge

[ lower arm
M hand

W upper leg
[l lower leg
M foot

M antenna
Mhead
[l thorax

Wcup
Ml handle

Whandle
[ cup
Mtop
. [base
tail
Ebody
M fin

M face
[ hair
M neck

[leg [ top
M abdomen Ml leg

W big roller
[ medium roller [ joint
W axle M jaws

Mhead Whead
M neck Ewing
M torso Wbody
Hfin [leg [leg
M stabilizer M tail Wtail
W body
[[wing

Wear Wbig cube
Ehead Esmall cube
Mtorso

Oback
[Wupper arm
M lower arm M back

M hand [ middle
Wupper leg M scat

W lower leg Oleg

M foot

[ tail

M thumb
Hindex
WM middle
[Cring
M pinky
Ml palm

Whead

[ handle M tentacle

Figure 1: Labeling and segmentation results from applying our algorithm to one mesh each from every category in the Princeton Segmentation
Benchmark [Chen et al. 2009]. For each result, the algorithm was trained on the other meshes in the same class, e.g., the human was labeled

after training on the other meshes in the human class.

Abstract

This paper presents a data-driven approach to simultaneous seg-
mentation and labeling of parts in 3D meshes. An objective func-
tion is formulated as a Conditional Random Field model, with terms
assessing the consistency of faces with labels, and terms between
labels of neighboring faces. The objective function is learned from
a collection of labeled training meshes. The algorithm uses hun-
dreds of geometric and contextual label features and learns dif-
ferent types of segmentations for different tasks, without requir-
ing manual parameter tuning. Our algorithm achieves a significant
improvement in results over the state-of-the-art when evaluated on
the Princeton Segmentation Benchmark, often producing segmen-
tations and labelings comparable to those produced by humans.

1 Introduction

Segmentation and labeling of 3D shapes into meaningful parts is
fundamental to shape understanding and processing. Numerous

http://www.dgp.toronto.edu/~kalo/papers/LabelMeshes/

© ACM, (2010). This is the author's version of the
work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The
definitive version was published in ACM
Transactions on Graphics 29{3}, July 2010.

tasks in geometric modeling, manufacturing, animation and tex-
turing of 3D meshes rely on their segmentation into parts. Many
of these problems further require labeled segmentations, where the
parts are also recognized as instances of known part types. For
most of these applications, the segmentation and labeling of the
input shape is manually specified. For example, to synthesize tex-
ture for a humanoid mesh, one must identify which parts should
have “arm” texture, which should have “leg” texture, and so on.
Even tasks such as 3D shape matching or retrieval, which do not
directly require labeled-segmentations, could benefit from knowl-
edge of constituent parts and labels. However, there has been very
little research in part labeling for 3D meshes, and 3D object seg-
mentation likewise remains an open research problem [Chen et al.
2009].

This paper introduces a data-driven approach to simultaneous seg-
mentation and labeling of parts in 3D meshes. Labeling of mesh
parts is expressed as a problem of optimizing a Conditional Ran-
dom Field (CRF) [Lafferty et al. 2001]. This segments a mesh into
parts, with each part having a corresponding label. The CRF ob-
jective function includes unary terms that assess the consistency
of faces with labels, and pairwise terms between labels of adja-
cent faces. The objective function is learned from a collection of
labeled training meshes. The basic terms of the CRF are learned
using JointBoost classifiers [Torralba et al. 2007], which automat-
ically select from among hundreds of possible geometric features
to choose those that are relevant for a particular segmentation task.
Holdout validation is used to learn additional CRF parameters. We
evaluate our methods on the Princeton Segmentation Benchmark,
with manually-added labels. Our method yields 94% labeling ac-
curacy, and is the first labeling method applicable to such a broad
range of meshes. In segmentation, our method yields 9.5% Rand In-



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

dex error, significantly better than the current state-of-the-art, with
results similar to human-provided segmentations for most classes.
No manual parameter tuning is required. The main limitation of
our approach is that it requires a consistently-labeled training set;
however, we find that, for many cases, just a few training meshes
suffice to obtain high-quality results. Different segmentation tasks
can be specified by providing examples of the new task, without
requiring any manual parameter adjustments. Once learned, the al-
gorithm can be applied to databases of the same type of objects to
automatically segment and label them.

To date, nearly all existing mesh segmentation methods attempt
segmentation without recognition. When the goal of segmenta-
tion can be formulated mathematically (e.g., partitioning into devel-
opable patches), low-level geometric cues may be sufficient. How-
ever, many tasks require some understanding of the functions or re-
lationships of parts, which are not readily available from low-level
geometric cues. It is unknown whether human-level 3D mesh seg-
mentation is possible without the benefit of higher-level cues. It is
worth noting that, in computer vision, after decades of research on
performing image segmentation alone, most work has turned to the
joint segmentation and recognition of images. Furthermore, current
models are learned from training data, allowing them to employ
much more sophisticated models than are possible with manually-
tuned models. These methods produce state-of-the-art results on
several benchmark tests. Hence, it is worth asking: is part recogni-
tion useful for 3D mesh segmentation? Furthermore, can segmen-
tation algorithms benefit from models learned from human-labeled
meshes? Our work provides positive evidence for both questions.

2 Related work

Mesh segmentation has been a very active area of research in com-
puter graphics. Most effort has focused on finding simple geomet-
ric criteria for segmentation of a single input mesh [Mangan and
Whitaker 1999; Shlafman et al. 2002; Katz and Tal 2003; Liu and
Zhang 2004; Katz et al. 2005; Simari et al. 2006; Attene et al.
2006b; Lin et al. 2007; Golovinskiy and Funkhouser 2008; Li et al.
2008; Lai et al. 2008; Lavoué¢ and Wolf 2008; Huang et al. 2009];
see [Attene et al. 2006a; Shamir 2008; Chen et al. 2009] for sur-
veys. Such approaches employ simple, interpretable geometric al-
gorithms, but are limited to a single generic rule (e.g., concavity,
skeleton topology, fitting shape primitives) or a single feature (e.g.,
shape diameter, curvature tensor, geodesic distances) to partition
an input mesh. Our method employs many of the geometric fea-
tures proposed by these methods. For many problems, different
types of surfaces and different surface parts may require different
features for segmentation. Because our model is learned, it can em-
ploy many different geometric features to partition the input mesh.
Our algorithm learns problem-specific parameters from training ex-
amples, rather than requiring manually-tuned parameters. Further-
more, our method jointly segments and labels meshes. Simari et al.
[2009] perform segmentation and labeling jointly. However, this
method requires manual definition and tuning of objective functions
for each type of part, and is sensitive to local minima.

A few approaches make use of part matching for segmentation, and
can transfer part labels based on the matches. Kraevoy et al. [2007]
and Shapira ef al. [In Press] perform an initial segmentation, and
then match segments and transfer labels based on this segmentation.
These methods require the initial segmentation to be sufficiently
reliable. Pekelny and Gotsman [2008] track and label rigid com-
ponents in sequences of 3D range data through the Iterated Clos-
est Point registration algorithm, given an initial user segmentation.
Similarly, Golovinskiy and Funkhouser [2009] simultaneously par-
tition collections of 3D models by matching points between meshes
based on rigid mesh alignment. A user may provide example seg-

mentations to be included in the matching. These methods are lim-
ited to cases where an accurate rigid correspondence exists.

Joint image segmentation and recognition has recently been an ac-
tive topic in computer vision research. Early works in this area in-
clude [Duygulu et al. 2002; He et al. 2004; Konishi and Yuille 2000;
Kumar and Hebert 2003; Tu et al. 2005; Schnitman et al. 2006].
Our method is most directly inspired by TextonBoost [Shotton et al.
2009], which performs joint image segmentation and recognition,
using a model learned from a training database. As in Textonboost,
we also make use of JointBoost and Conditional Random Fields.
We add new components to the model, including 3D geometric fea-
ture vectors, 3D contextual features, cascades of classifiers, and a
learned pairwise classifier term, all of which we find to be essential
to obtaining good results.

Our work is also related to segmentation and recognition of 3D
range data [Anguelov et al. 2005; Lim and Suter 2007; Munoz
et al. 2008]. These methods employ small sets of features, such
as local point density or height from ground, which are special-
ized to discriminate a few object categories in outdoor scenes, or
to separate foreground from background. Golovinskiy et al. [2009]
segment urban range data using a graph cut method, and then ap-
ply a learned classifier, based on geometric and contextual shape
cues. Range data methods aim to identify large-scale structures
from point clouds, such as separating cars from roads, whereas we
aim to distinguish smaller parts in 3D meshes. Hence, unlike these
methods, we employ a large variety of shape-based mesh features
along with appropriate contextual features, and also use sophisti-
cated classifiers for the unary and pairwise terms.

3 CRF model for segmentation and labeling

We now describe our algorithm for segmenting and recognizing
parts of a mesh; the procedure for learning this model is described
in Section 4. Our goal is to label each mesh face 7 with a label
I € C, where C is a predefined set of possible labels, such as “arm,”
“leg,” or “torso.” Each face has a vector of unary features x;, which
includes descriptors of local surface geometry and context, such as
curvatures, shape diameter, and shape context. These features pro-
vide cues for face labeling. In addition, for each adjacent pair of
faces, we define a vector of pairwise features y;;, such as dihedral
angles, which provide cues to whether adjacent faces should have
the same label. Then, computing all mesh labels involves minimiz-
ing the following objective function:

E(c;0) = > aiBi(ci;xi,01) + Y _ L Ba(ci,¢j3yij,02) (1)
7 1,7

where the unary term F; measures consistency between the fea-
tures x; of mesh face i and its label ¢;, the pairwise term F> mea-
sures consistency between adjacent face labels ¢; and c;, given pair-
wise features y;;. The model parameters are 6 = {61,62}. The
terms are weighted by the area a; of face ¢, and the length of the
edge ¢;; between faces 7 and j. In order to make energies compara-
ble across meshes, the areas a; are normalized by the median face
area in the mesh, and the edge lengths ¢;; are normalized by the
median edge length. Details of the energy terms and feature vectors
are given later in this section.

This type of model is referred to as a Conditional Random Field
(CRF) [Lafferty et al. 2001]. In a CRF, the conditional probability
of a labeling given the mesh is defined as:

P(C‘X7 Yy 9) = exp(—E(c;H))/Z(x,y,H) @)

where Z is a normalization factor. This is in contrast to a Markov
Random Field (MRF) model [Geman and Geman 1984], which de-
fines a joint probability over the mesh and the labels, from which



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

L 1.0
M head | ‘
[ torso 9 0.8
[l upper arm \
[ lower arm ~ 0.6
M hand ey "‘
W upper leg 0.4
M lower leg
-

M foot - 0.2

»

' 00

(b) Result using only
the unary classifier

(c) Entropy of

Traini h
(a) Training meshes the unary classifier

(d) Geometry-dependent (e) CRF w/o boosting (f) CRF w/o contextual
pairwise term

(g) Full CRF
for pairwise term features result

Figure 2: Components of our algorithm. (a) The entire training set for this example consists of four meshes. The bottom-right mesh is used
as the validation set. (D) Labeling result using only the unary classifier. (C) Visualization of classifier uncertainty, computed as the entropy
of the probabilities output by the unary classifier. Red values indicate greater uncertainty. The classifier is uncertain mainly near object
boundaries, and where corresponding parts in the training meshes have inconsistent boundaries. (d) Geometry-dependent pairwise term
(exponentiated and normalized). This term prefers boundaries to occur at specific locations. (€) Result of applying a CRF model without
JointBoost for the pairwise term. (f) CRF result, but omitting contextual label features. (Q) Result of applying our complete CRF model. Note
the accuracy of the result, despite the mesh having different pose and body shape from the training meshes.

the conditional may then be derived. For segmentation and labeling,
CRFs have two advantages over MRFs. First, the pairwise term F»
in a CRF can depend on the input data, which is not true in an MRF.
This allows us, for example, to express that segment boundaries are
more likely to occur between a pair of faces with a small exterior
dihedral angle. Second, CRF learning algorithms optimize for la-
beling performance, whereas MRF learning algorithms attempt to
model both the input features and the labels, and thus may have
worse labeling performance. For these reasons, CRFs have become
popular in natural-language parsing (e.g., [Lafferty et al. 2001]) and
image segmentation (e.g., [He et al. 2004; Shotton et al. 2009]).

The objective E(c;0) is optimized using alpha-expansion graph-
cuts [Boykov et al. 2001]. The resulting labeling ¢ implicitly de-
fines a segmentation of the mesh, with segment boundaries lying
between each pair of faces with differing labels. Note that this
means that our method cannot separate adjacent parts that share
the same label. Furthermore, our method is only suitable for learn-
ing segmentations that have attached labels. However, we do not
require the number of segments to be specified in advance.

3.1 Unary Energy Term

The unary energy term evaluates a classifier. The classifier takes
the feature vector x for a face as input, and returns a probability
distribution of labels for that face: P(c|x,01). Specifically, we use
a JointBoost classifier [Shotton et al. 2009; Torralba et al. 2007],
summarized in Section 3.3. Then, the unary energy of a label c is
equal to its negative log-probability:

Ei(e;%,01) = —log P(c|x,01) 3)

The unary classifier is the most important component of our sys-
tem. As illustrated in Figure 2(b), labeling using just this term alone
gives good results in part interiors, but not near boundaries. This is
accurately reflected by the uncertainty of the classifier (Figure 2(c)).
Next, we add a pairwise term to refine these boundaries.

3.2 Pairwise Energy Term

The pairwise energy term penalizes neighboring faces being as-
signed different labels:

Bs(c,cyy,02) = L(c,c') G(y) Q)

This term consists of a label-compatibility term L, weighted by a
geometry-dependent term (. The main role of the pairwise term
is to improve boundaries between segments and to prevent incom-
patible segments from being adjacent. The pairwise energy term is
always zero when ¢ and ¢’ have the same label. Hence, the pair-
wise term cannot be used on its own, since it assigns zero energy
when all faces have the same label. The geometry-dependent term
is visualized in Figure 2(d).

The label-compatibility term L(c, ¢’) measures the consistency be-
tween two adjacent labels. This term is represented as a matrix
of penalties for each possible pair of labels, which allows dif-
ferent pairs of labels to incur different penalties. For example,
head-ear boundary edges may need to be penalized less than head-
torso boundary edges (since ears might be much smaller parts and
less common in the training examples) while head-foot boundaries
might never occur. The costs are non-negative (0 < L(k,!)) and
symmetric (L(k,1) = L(l,k)), for labels k,! € C. Furthermore,
we constrain there to be no penalty when there is no discontinuity:
L(k, k) = 0 for all k.

The geometry-dependent term G(y) measures the likelihood of
there being a difference in labels, as a function of the geometry
alone. This term has the following form:

G(y) = —rlog P(c # |y, )
—Alog (1 — min(w/m, 1) +€) + p ®)

The first term is the output of a JointBoost classifier that com-
putes P(c # c'|y, ), the probability of two adjacent faces hav-
ing distinct labels, as a function of pairwise geometric features y.
This classifier helps detect boundaries better than using only dihe-
dral angles (Figure 2¢). The second term penalizes boundaries be-
tween faces with high exterior dihedral angle w, following Shapira
et al. [In Press]. The p term penalizes boundary length and is help-
ful for preventing jaggy boundaries and for removing small, iso-



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

lated segments [Golovinskiy and Funkhouser 2008; Shapira et al.
In Press]. A small constant € is added to avoid computing log 0.

3.3 JointBoost classifier

Here we briefly summarize the JointBoost classifier; see [Torralba
et al. 2007] for more information. JointBoost is a boosting algo-
rithm that has many appealing properties: it performs automatic
feature selection and can handle large numbers of input features for
multiclass classification, it has a fast sequential learning algorithm
(Section 4.1), and it produces output probabilities suitable for com-
bination with other terms in the CRF model. JointBoost is designed
to share features among classes, which greatly reduces generaliza-
tion error for multiclass recognition when classes overlap in feature
space. For these reasons, we believe that JointBoost is the best
available classifier for this task.

The classifier takes as input a feature vector z, and outputs a prob-
ability P(c = l|z) for each possible class label [ € C, where C
is the set of possible labels. In the unary energy term, a classifier
computes the likelihood of a part label ¢ given unary features x. In
the pairwise energy term, a second JointBoost classifier is used to
determine the likelihood that adjacent faces have different classes
(c # ) given pairwise features y. This is a binary classifier; in this
case, JointBoost reduces to an earlier algorithm called GentleBoost
[Friedman et al. 2000]. Finally, we use a cascade of JointBoost
classifiers to define contextual label features (Section 3.4).

The classifier is composed of decision stumps. A decision stump is
a very simple classifier that scores each possible class label [, given
a feature vector z, based only on thresholding its f-th entry z5. A
JointBoost decision stump can be written as:

a zy>T1andl €Cs
hz, ;) =< b zy<7andl €Cs (6)
ki 1¢Cs

In other words, each decision stump stores a set of classes Cg. If
l € Cs, then the stump compares z; against a threshold 7, and
returns a constant a if zy > 7, and another constant b otherwise.
If I ¢ Cgs, then the comparison is ignored; instead, a constant k; is
returned instead. There is one k; for each [ ¢ Cg. The parameters ¢
of a single decision stump are f, a, b, T, the set Cg, and k; for each
1 ¢Cs.

The probability of a given class [ is then computed by summing the
decision stumps and then performing a softmax transformation:

H(z,0) =) h(z1;¢;) (7)

_ ep(H(,D)
Zegc eXp(H(Z, 6))

The parameters £ consist of the parameters {¢; } of all the individ-
ual decision stumps.

P(c=1]z¢) ®)

3.4 Feature vectors

We do not know in advance which features will be useful for seg-
mentation. Furthermore, it may be that different features are infor-
mative for different mesh parts and for different styles of segmenta-
tion. As a result, we construct our feature vectors out of as many in-
formative features as possible. Since the JointBoost algorithm per-
forms automatic feature selection, each classifier only uses a subset
of the provided features. In our experiments, we have not found a
case where adding informative features led to worse results. Hence,
one may add other features besides the ones listed here. We find

that the precise form of the features is important: careful selection
of details, such as binning strategy and normalization, can improve
results. Adding features does increase computation time, especially
for preprocessing and learning. Hence, we have attempted to design
features that are as informative as possible.

Unary features. We use multi-scale surface curvature, singular
values extracted from Principal Component Analysis of local shape,
shape diameter [Shapira et al. In Press], distances from medial sur-
face points [Liu et al. 2009], average geodesic distances [Hilaga
et al. 2001; Zhang et al. 2005], shape contexts [Belongie et al.
2002], and spin images [Johnson and Hebert 1999] to form a ba-
sic 375-dimensional feature vector x; per face ¢. Full details of our
implementation for these features are given in Appendix A.

Contextual label features. Training a classifier using only the
above features is often sufficient for labeling. However, in many
cases, better results can be achieved by re-training an additional
classifier that uses information about the global distribution of la-
bels around each mesh face. Since the labels are not known in ad-
vance, they are approximated by an initial application of the classi-
fier with the above features. We introduce contextual label features
based on these initial labels.

We first train an initial JointBoost classifier using the initial feature
vector x. This classifier can be applied to each training mesh to
produce per-face class probabilities P(c|X). Then, for each face i,
we compute a histogram of these probabilities, which captures the
global distribution of part labels relative to the face, in a manner
inspired by shape contexts [Belongie et al. 2002], and similar to
image auto-contexts [Tu 2008] and bags of semantic textons [Shot-
ton et al. 2008]. The histogram bins are determined as a function
of geodesic and euclidean distances. These features allow the algo-
rithm to make use of estimates of labels from the global context of
each face. Details of the histograms are given in the Appendix.

The values of these histogram bins form a set x; of contextual la-
bel features that are concatenated with X to produce the full feature
vector x; = [%7, X1 |”. The new feature vector has 375 + 35 - |C|
features, where |C| is the number of labels. Then, we train a new
JointBoost classifier from X; to class probabilities. The new clas-
sifier will now take into account the generated contextual features
to further discriminate parts, as shown in Figure 2g, compared to
the result of Figure 2f, where only the initial JointBoost classifier is
used (without the contextual label features).

After training the second classifier, we bin the newly produced class
probabilities P(c|x1) to produce new contextual label features Xs.
These are concatenated with x to produce a third feature vector xa.
Then, we can train a third classifier based on the feature vector xs.
This process can be iterated to further refine the discrimination of
classes, similar to cascade generalization [Gama and Brazdil 2000].
This approach may be iterated N times to produce N feature vec-
tors, until the error on the validation set does not increase. In our
experiments, the algorithm usually selects N = 3. Computing the
feature vectors for a new surface entails repeating the same process
as above: x is computed for each face, then the first JointBoost pro-
duces the first set of contextual features X, and the process repeats
until getting x, which is used as the complete feature vector x.
We find that using these contextual features produces a significant
improvement in performance, about 3 — 10%, depending on the
mesh category.

Pairwise features. The pairwise feature vector y;; between
faces ¢ and j consists of the dihedral angles between the faces, and
differences of the following features between the faces: curvatures



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

and surface third-derivatives, shape diameter differences, and dif-
ferences of distances from medial surface points. We also use con-
textual label features, similar to the features above; however, we
found in our experiments that these contextual features have little
impact on the results (about 0.5% improvement). The complete fea-
ture vector y is 191-dimensional. Details of the pairwise features
are given in Appendix B.

4 Learning CRF parameters

We now describe a procedure for learning the parameters of the
CRF model, given a set of labeled training meshes. The natural
approach to CRF learning is Maximum Likelihood or MAP, e.g.,
maximizing Equation 2 over all training meshes. Unfortunately,
computing the normalization Z is intractable. While contrastive
divergence can be used for this optimization [He et al. 2004], this
method is computationally expensive, and would not be feasible at
the scale of mesh processing.

Instead, we perform the following steps, based on the approach of
Shotton et al. [2009]. First, we randomly split the training meshes
into an exemplar set and a validation set, in a proportion of ap-
proximately 4 : 1. We then learn the JointBoost classifiers for the
unary term and the pairwise term from the exemplar set. Finally,
the remaining CRF parameters are learned by iteratively optimiz-
ing segmentation performance on the validation set. These steps
are described below.

4.1 Learning JointBoost classifiers

For completeness, we now summarize the JointBoost learning algo-
rithm, for learning classifiers of the form described in Section 3.3.
See [Torralba et al. 2007] for an excellent explanation and deriva-
tion of the algorithm.

The input to the algorithm is a collection of M training pairs
(zs, ci), where z; is a feature vector and ¢; is the corresponding
class label for that feature. Furthermore, each training pair is as-
signed a per-class weight w; .. JointBoost minimizes the weighted
multiclass exponential loss over the exemplar set:

J=>" wicexp(—I(ci,1) H(z 1)) )

i=1 leC

where H (z,1) is defined in Equation 7, C is the set of possible class
labels, and I(c, ¢’) is an indicator function that is 1 when ¢ = ¢’
and -1 otherwise.

For the unary terms, the training pairs are the per-face feature vec-
tors and their labels (x;, ¢;) for all mesh faces in the exemplar set.
For the pairwise terms, the training pairs are the pairwise feature
vectors and their binary labels (yij,c; # ¢;). For the unary term,
the wj . is the area of face ¢. For the pairwise term, wj . is used to
reweight the boundary edges, since the training data contains many
more non-boundary edges. Let Ng and Nyp be the number of
each type of edge, then w; . = ¢Np for non-boundary edges and
w;,. = ¢Nnp for boundary edges, where ¢ is the corresponding
edge length.

The algorithm proceeds iteratively. The algorithm stores a set of
weights 0; . that are initialized to the weights w;,.. Then, at each
iteration, one decision stump (Equation 6) is added to the classi-
fier. The parameters ¢; of the stump at iteration j are computed to
optimize the following weighted least-squares objective:

Juse(¢5) = D> ia(I(ci,l) — h(zi,1:6,))*  (10)

leC i=1

where C are the possible class labels. Following Torralba et
al. [2007], the optimal a, b, k; are computed in closed-form, and
f,7,Cs are computed by brute-force. When the number of labels
|C| is greater than 6, the greedy heuristic search is used for Cgs.
Once the parameters ¢; are determined, the weights are updated
as:

Wi, 4 Wi,cexp(—1(ci, 1) h(zi, 15 $;)) (11)

and the algorithm continues with the next decision stump.

We run the algorithm for at most 300 iterations. To avoid overfit-
ting, we also monitor the classifier’s performance on the validation
set by computing the cost function of Eq. 9 after each iteration, and
keep track of which iteration j* gave the best score. At the end of
the process, we return the classifier from step j* (i.e., discarding
decision stumps from after step j*). We also terminate early if the
classifier’s performance in the validation set has not improved over
the last 50 iterations.

4.2 Learning the remaining parameters

Once the JointBoost classifiers have been learned, we learn the re-
maining parameters of the pairwise term (x, A, i, L) by hold-out
validation. Specifically, for any particular setting of these param-
eters, we can apply the CRF to all of the validation meshes, and
evaluate the classification results. We seek the values of these pa-
rameters that give the best score on the validation meshes.

We need to define an error function by which to evaluate classifica-
tion results. A obvious choice would be to measure what percentage
of the mesh’s surface area is correctly labeled. We refer to this as
the Classification Error:

E= (Z a;(I(ci,c;) + 1)/2) / (ZGZ) (12)

i

where a; is the area of face ¢, ¢; is the ground-truth label for face ¢,
¢; = arg max P(c|x;) is the output of the classifier for face ¢, and
I(c, ') defined as in Section 4.1. However, when training against
this error, the algorithm tends to mostly refine boundaries between
larger parts but skip cuts that generate small parts, producing no-
ticeable errors in the results without incurring much penalty.

Instead, we optimize with respect to the Segment-Weighted Error
which weighs each segment equally:

Bs =Y -((ei¢) +1)/2 (13)

where A, is the total area of all faces within the segment that has
ground-truth label ¢;.

These parameters are optimized in two steps. First, the Segment-
Weighted Error is minimized over a coarse grid in parameter space
by brute-force search. Second, starting from the minimal point in
the grid, optimization continues using MATLAB’s implementation
of Preconditioned Conjugate Gradient with numerically-estimated
gradients.

5 Results

We now describe experimental validation and analysis of our ap-
proach.

Data set. We employed data from the Princeton Segmentation
Benchmark [Chen et al. 2009] for all of our tests. The dataset pro-
vides 19 categories of meshes, segmentations provided by human



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

M back | |
[ middl
M scat ¢ (b) () (b) (@ (b)
M leg
(@) l

t=h
I h

Training meshes (d) (e) (@) (d) (e) (a) (d)
Whead i ‘%
. M tentacle \ (b) (@]
Training meshes (@) ‘% ‘% (a)

Mhead

M neck !! 'l
M torso
Mleg
Wtail :
M car |
(d)

Figure 3: Comparisons to previous segmentation methods, for chairs, octopuses, and quadrupeds. For each test, the entire training set
is shown on the left. In each figure, the methods compared are: (a) our method, (b) average human segmentation from the Princeton
Segmentation Benchmark, (C) Consistent Segmentation [Golovinskiy 2009], (d) Shape Diameter [Shapira In Press], (€) Randomized Cuts
[Golovinskiy 2008], with number of segments defined as the average number of segments in the category. The Consistent Segmentation
method provides labels in addition to segmentation based on the same training set. The other methods only perform segmentation, and do not

(0
I(e)
I”I (©)
|||| (e)
(o]

(e) &

Training meshes

make use of training data.

users, source code for computing evaluation scores, and the results
of applying many previous segmentation methods.

We performed a few initial steps to process the data. Since segment
labels are not provided with the data, we manually assigned a set
of labels to each class (Figure 1), according to the average human
segmentation for each category. For example, almost all users par-
tition the elements of the chair class (Fig. 3) into legs, seats, back,
and middle.

For each mesh, the Princeton benchmark provides multiple seg-
mentations. The dataset contains significant variations in types
of segmentations: while many segmentations are consistent with
each other, one user might segment a human into just 4 segments,
whereas another might use 50 segments. We select one of these
segmentations to be labeled and used as the training/test data for
that mesh, in order to reduce the size of the dataset and remove
outlier segmentations. For most meshes, the exemplar segmenta-
tion was selected as the segmentation with the lowest average Rand
Index to all other segmentations for that mesh. However, in a few
cases, the mesh with the best score had a very atypical segmenta-
tion to the rest of the category (e.g., the best segmentation for one
octopus mesh had tentacles subdivided into many parts, whereas
the tentacles in the rest of the category were not), in which case, we
manually merged segments or chose the second-best segmentation.

Labeling results. We now evaluate the quality of the labels pro-
duced by our method. Because each category in the database has
only 20 meshes, we evaluate our method using leave-one-out cross-
validation. For each mesh ¢ in each category, we train a CRF model

on the other 19 meshes in that class, and then apply it to mesh
i, and compute the Classification Error (Eq. 12) according to the
ground-truth data. We report Recognition Rate, which is one minus
Classification Error, reported as a percentage. Averaging over all
categories, our method obtains approximately 94% accuracy.

In order to determine the effect of training set size, we repeated
the experiment with smaller training sets. When testing on mesh 4,
the CREF is trained on a subset of M of the remaining 19 meshes.
These are averaged over 5 randomly-selected subsets. We tested
with M = 3,6,12. Table 1(left) shows scores of our method for
different mesh categories and for different values of M. When re-
ducing the training set size, we find that our method still gives ex-
cellent results for categories with little geometric variation (such as
the Octopus), whereas other categories, such as Bust and Bearing,
have very different geometric parts; a subset of 3 meshes often lacks
some of the labels used elsewhere in the category.

The Segment-Weighted Error (Eq. 13) scores of our algorithm are:
89% (leave-one-out error), 85% (M = 12 training examples), 81%
(M = 6 training examples) and drops to 75% (M = 3 training
examples). The scores using this metric are lower than those of
Classification Error, because tiny missing segments cause dispro-
portionally large penalties.

To our knowledge, the only previous method that can label meshes
by example is that of Golovinskiy and Funkhouser [2009]. This
method assumes that rigid alignment can be performed between a
mesh and the training data, which does not hold for most of the
benchmark data; comparisons are shown in Figure 3. To our knowl-
edge, our method is the first to be able to accurately label such a



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

Rand Index

Consistency Error

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

SB19 SBI2  SB6 SB3  Rand

Cuts

Shape
Di
Figure 4: Evaluation of segmentation. For all methods, evaluations are performed according to the protocols of [Chen et al. 2009], using

Human Train.
Data

all human segmentations in the Princeton Segmentation Benchmark.

0.14

0.12

0.10

0.08
0.06
0.04
0.02

0.00

SB19 SBI2  SB6 SB3  Rand

Cuts

Human Train.
Data

Shape
Diam

'SB19’ represents leave-one-out-error of our technique averaged over

all the categories of the benchmark. 'SB12°, 'SB6’°, 'SB3’ represents the average error using training sets of size 12,7,6, and 3 (see text for
details). SB19 performs almost 50% better than the best existing methods. Performance drops with less training data, but, even with only 3
examples, our method still out-performs previous methods by a small margin.

Labeling: Recognition Rate Segmentation: Rand Index

SB19 SB12  SB6  SB3 |Bench.Train. SB19 SBI12 SB6 SB3
Human 93.6 932 894 832 | 13.5 11.2 119 129 143 147
Cup 99.6 996 991 963 | 13.6 98 99 99 10.0 10.0
Glasses 974 972 961 944 | 10.1 84 13.6 141 141 142
|Airplane | 96.3 96.1 955 912 | 92 74 79 82 80 102
|Ant 988 988 987 974 | 30 1.7 19 22 23 26
Chair 98.5 984 97.8 971 89 52 54 56 61 6.6
Octopus | 98.4 984 986 983 | 24 18 1.8 18 22 22
Table 994 993 991 990 | 93 59 62 66 64 11.1
Teddy 98.1 98.1 933 931 | 49 31 31 32 53 56
Hand 90.5 887 84 749 | 91 9.1 104 112 139 158
Plier 97.0 962 943 922 | 7.1 51 54 9.0 100 105
Fish 96.7 956 956 941 | 155 11.8 129 132 142 135
Bird 92.5 879 842 763 | 62 44 104 148 148 18.6
|Armadillof 919 90.1 840 837 | 83 63 80 84 84 8.6
Bust 672  62.1 539 522 | 220 188 214 222 334 393
Mech 946 905 889 824 | 13.1 85 10.0 11.8 12.7 24.0
Bearing 952 86.6 848 613 | 104 68 9.7 17.6 21.7 32.7
\Vase 872 858 77.0 743 | 144 105 16.0 17.1 199 253
FourLeg | 88.7 862 850 82.0 | 149 11.6 133 139 147 163
|Average | 93.8 92.0 894 854 | 103 7.7 94 107 12.2 14.8
Table 1: Left: Recognition rate scores for our method across all

categories in the benchmark, and for various training set sizes
M = 3,6,12,19. Right: Rand Index scores for human seg-
mentations, training segmentations, and our method. Recognition
rate is measured against our labeling dataset (see text for details),
whereas the Rand Index is measured against all human segmenta-
tions in the Princeton benchmark.

broad class of meshes.

Segmentation results. In contrast to labeling, we test our seg-
mentation algorithm using all original human segmentations for all
meshes, according to the protocol from Chen et al. [2009]. Re-
sults are shown in Figure 4, and comparisons to previous methods
are shown in Figure 3. Our method gives a significant improve-
ment over the previous state-of-the-art, according to all measures
proposed by Chen et al. [2009]. Even when training on just three
meshes, our method obtains better scores than other methods in
nearly all cases. Table 1(right) provides Rand Index scores for each
category and for different choices of training set size as above.

There are a few details to note about these experiments. First, Rand
Cuts requires as input the number of segments for the mesh. For
this, we used the average number of segments for each category.
Second, the Human Score is worse than the score for our training

all models,
all classifiers
all models,
first classifier - Curv.
all models, M rca
ten first feat.
human, - sC
all classifiers l:l AGD
airplane, l:l SD
all classifiers
chair, l:l MD
all classifiers - SI
bird, [ Re8

all classifiers
quadruped,
all classifiers

0.0 011 02 03 04 05 06 07

Figure 5: Percentages of features used by JointBoost for different
cases. See text for details. Legend: Curv.=curvature, PCA=PCA
singular values, SC=shape contexts, AGD=average geodesic dis-
tances, SD=shape dimeter, MD=distance from medial surface, SI
= Spin Images, CL = contextual label features.

data (computed as in [Chen et al. 2009]) because we reduce the
training set as described above. Third, when disconnected parts
on the same mesh have the same label (e.g., the two hands on a
human), they are scored as separate segments.

Feature selection. Figure 5 visualizes which features were se-
lected by JointBoost in the unary term, for various subsets of the
data. For example, the top row shows, for each type of feature, the
percentage of this feature that was used, across the entire bench-
mark dataset. The most features came from Shape Contexts [Be-
longie et al. 2002] and the Contextual Label. The third row shows
the ten features that were selected by the first ten rounds of Joint-
Boost (i.e., the features used by the first ten decision stumps). The
remaining rows show features used for individual categories. These
results indicate that the Shape Context features were the most im-
portant among the basic features. However, each type of feature
was used multiple times. This is a common theme among boosting
algorithms: adding more features that provide independent sources
of information typically improves results.

Generalizing to different categories. Fig. 6 shows results in
which we train on one category and test on another. The algorithm



M head

E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010
I wing
[l body

IR

Figure 6: Experiments where training and test categories are different. Sample training data shown on the left (complete training sets
not shown). Top row: Training on birds, applying to planes. Middle row: Labeling tables as chairs. Bottom row: Labeling humans as
quadrupeds. A failure case here is in the lower-right, where much of the child’s face is confused for a neck. The seated humans illustrate
a limitation of our method, i.e., that connected segments with the same label are not separated, here, a left arm is not separated from a leg

when they connect.
Mhead
[ front torso
[ middle torso
[ back torso
[ front leg
[l back leg
M il N

Ty

Training Meshes Test Meshes

Figure 7: Using an alternative segmentation style. Our main quantitative experiments used a segmentation style from the Princeton Bench-
mark in which each animal has a single torso (e.g., see Fig. 3). Here we train on examples from the Benchmark in which the torso is split
into three segments. The six training meshes are shown on the left. Changing the style does not require any manual parameter tuning. Good
results are obtained for several test meshes, except the giraffe, where the torso is not labeled accurately.

yields reasonable results when labeling airplanes like birds, tables
like chairs, and people like quadrupeds.

[Mhead
) ) . Wtorso
Different styles of segmentations. Our algorithm can be used Warm
to learn different styles of segmentation for different tasks. We Whand
demonstrate this capability with a set of animal segmentations from =
the benchmark data that separate the torso into three segments B foot
(Fig. 7), unlike the dataset used for quantitative evaluation. Our

algorithm correctly applies these labels to several test meshes, ex- Training meshes Test meshes
cept the giraffe.

Figure 8: Merging categories. A CRF was learned from the train-
ing meshes on the left, which include both humans and teddy bears.

. . . . . Results on a test human and bears shown on right.
Merging categories. Figure 8 shows an example in which a CRF

was learned on a training set consisting of both humans and teddy
bears, and applied to new humans and teddy bears. The algorithm
successfully learns a model given the non-homogeneous data.



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

6 Applications

We now briefly describe a few procedures that illustrate how our
approach could be used to automate workflows that would oth-
erwise involve laborious manual effort. For each application, we
implemented an automatic pipeline that takes a mesh of an object
category as input, computes segmentation and labeling, and then
processes the extracted parts. Such procedures could automate pro-
cessing of large databases of objects of the same category.

Functional prototyping. Functional prototyping entails creating
a real and working 3D object from a mesh, such as created by a de-
signer. Our eyeglass pipeline (Figure 9(a-d)) takes a mesh as input
and computes segmentation and labeling. The frontal silhouettes of
the lens parts are offset, extruded, and subtracted from the object
to create a frame. A frontal plane passing through the combined
centroid of the two arm-lens segment boundaries is used to cut the
mesh, separating the arms from the frame. Hinges and pins are cre-
ated at the cut, resulting in a wearable pair of glasses. We have also
implemented a procedure that, using a modeling tool like Teddy
[Igarashi et al. 2007], converts a single sketched stroke into an ar-
ticulated 3D mannequin, with joint-types based on extracted part
labels (Figure 9i-k).

Rigging and texturing. Given an automatically computed seg-
mentation and labeling, a skeleton may be created by placing joints
at centroids of part boundaries. We further create texture for ar-
madillo meshes (Figure 9(e-h)), using textures and accessories as-
signed to different labels, such as leathery skin for the feet, fur for
the torso, and a hook in place of a missing hand.

7 Discussion

We have described the first learning algorithm for both labeling and
segmentation of 3D meshes. The model is learned from a training
set without requiring any manual parameter tuning, and it obtains
state-of-the-art results on all categories in the Princeton Segmenta-
tion Benchmark. Our method is the first to demonstrate effective
labeling on a broad class of meshes. As our method represents an
early attempt in this area, there are several limitations to our method
(Figure 10), and many exciting directions for future work.

While considerable effort has rightly been put into devising geo-
metric criteria for shape classification, it remains an open question
as to whether simple geometric criteria are sufficient for segmenting
the way humans do. Our work suggests that learning models from
data—using carefully-chosen geometric features—can significantly
improve results. While this method is not easily interpretable in
terms of geometric intuitions, this kind of approach may nonethe-
less be of great practical value.

A major limitation of our approach is the need for labeled training
data. The dataset must have consistent labels, although some vari-
ation can be tolerated. For example, in Figure 3, the pig does not
have a neck segment, unlike the other meshes in the training data.

Generalization performance typically drops with fewer training
meshes. Classes with larger variability across the data require larger
training sets for good results. For example, the Ant and Octopus
classes give good results with very few training examples, whereas
the Bust and Vase categories give very poor results with small train-
ing sets (Table 1). For all classes, increasing the training set size
improves performance.

Our method cannot learn “generic” segmentations, that is, segmen-
tation without class-specific labels. The method cannot model seg-
mentations where connected parts share labels (Figure 10(a-b)). We

Warm

[Hiens

W bridge
Wear (b)
[Ehead

W torso
[back
[ upper ar

M ower arm
W hand
[l upper leg,
[l lower leg

(e) il (f)

Whead
M torso
[ upper arm
D lower arm
[l upper leg
[l lower leg

V)

(k)

Figure 9: Top row: Automatic procedure for converting Glasses
meshes into manufacturable 3D objects with lenses and hinges. (@)
The mesh is broken at the segment boundaries between the frame
and arms with our labeling technique, and corresponding hinges
are placed. Lenses are procedurally offset and subtracted from the
frame. (b-C) Two example glasses created with this procedure. (d) A
functional prototype, with working hinges, printed on a 3D printer.
Middle row: Automatic shader assignment and rigging based on
segment labels. (€) Labeled armadillo. (f) Procedural shaders as-
signed based on part labels, e.g., fur for the torso. (Q) An animation
skeleton is fitted to Armadillo automatically by placing the joints at
the centroids of corresponding segment boundaries. (h) Posed ar-
madillo. Bottom row: Automatic conversion of a 3D model drawn
with the Teddy sketching package into an articulated mannequin.
(i) Sketched 3D model. (j) Labeled model with mechanical joints
placed at segment boundaries. (K) Articulated model.

also assume that the target mesh is consistent with the training data;
e.g., there are no outlier segments. However, we believe that ele-
ments of our approach could be useful for these or related problems.
For example, our pairwise term could be used with a different unary
term, such as one based on interactive labeling or mesh alignment.

Adding additional informative geometric features should im-
prove results. At present, our algorithm cannot distinguish
left/right/up/down (e.g., left arm vs. right arm); features informa-
tive of orientation [Fu et al. 2008] may help. Symmetry-based fea-
tures and constraints could also be useful. Because many of our
features depend on geodesic distances, they may not be very accu-
rate when a test mesh exhibits significantly different topology than
the training. Developing new part-aware and topology-insensitive
shape descriptor features may help our method.

Our choice of features assumes that each shape is described by a
watertight 3D mesh with a single connected component. Applying
our technique for point clouds or polygon soups would require sev-
eral modifications in our feature set. This should allow our method
to be applied to data such as found in 3D scanning and architectural
applications.

The size of our training set is limited by training time, which is
several hours for our largest datasets e.g., training with 6 train-
ing meshes of about 20K-30K faces and six labels takes about 8
hours on a single Xeon E5355 2.66GHz processor. Once the model



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

W head

[ torso

[l vpper arm
[ lower arm
B hand

[l upper leg
[l lower leg

M foot

B neck
[Jnose

Whandle
[ cup

(@) (b)

(d

Figure 10: Examples of limitations of our algorithm: (@) Shiva
statue (not included in the benchmark), classified with a CRF
learned from the Human category. The algorithm correctly labels
the multiple heads and arms, but cannot separate connected seg-
ments with the same label. (b) Example of a test human mesh that
has significantly different topology than the other training meshes
of the Human category; its arms are connected to the legs, causing
the algorithm to mislabel the lower arms, hands and upper torso.
(¢) Our lowest scores in the benchmark were on the Bust category;
even when all the other busts are used as training meshes, our al-
gorithm can still have significant errors. (d) Example of a vase,
classified with a model learned from 3 other training meshes from
the Vase category, the performance drops significantly in some cat-
egories with large variability, when few training meshes are used.

is learned, applying it to new meshes is fast, usually only a few
minutes per mesh. Our implementation is currently far from opti-
mal, and faster training could allow learning a single model from
all meshes in the Princeton Segmentation data.

Acknowledgements

We thank Xiaobai Chen, Aleksey Golovinskiy, and Thomas
Funkhouser for providing their segmentation benchmark and code,
Szymon Rusinkiewicz for trimesh2, and Olga Veksler for the graph
cut code. We thank Daniela Giorgi and AIM@SHAPE for provid-
ing the meshes from the Watertight Track of SHREC 2007 that are
included in the benchmark. We also thank David Fleet and John
Hancock for computing resources, and Olia Vesselova for proof-
reading. This project was funded by NSERC, MITACS, CFI, and
the Ontario MRI. This work was done while AH was on a sabbatical
visit at Pixar Animation Studios.

References

ANGUELOV, D., TASKAR, B., CHATALBASHEV, V., KOLLER,
D., GuprTA, D., HEITZ, G., AND NG, A. 2005. Discrimi-
native Learning of Markov Random Fields for Segmentation of
3D Scan Data. In CVPR.

ATTENE, M., KATZ, S., MORTARA, M., PATANE, G., SPAGN-
UOLO, M., AND TAL, A. 2006. Mesh Segmentation - A Com-
parative Study. In Proc. SMI.

ATTENE, M., FALCIDIENO, B., AND SPAGNUOLO, M. 2006. Hi-
erarchical Mesh Segmentation Based on Fitting Primitives. Vis.
Comput. 22, 3.

10

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape Match-
ing and Object Recognition Using Shape Contexts. /EEE Trans.
Pattern Anal. Mach. Intell. 24, 4.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast Approxi-
mate Energy Minimization via Graph Cuts. [EEE Trans. Pattern
Anal. Mach. Intell. 23, 11.

CHEN, X., GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. A
Benchmark for 3D Mesh Segmentation. ACM Trans. Graphics
28, 3.

DuYGULU, P., BARNARD, K., DE FREITAS, N., AND FORSYTH,
D. 2002. Object Recognition as Machine Translation: Learning
a Lexicon for a Fixed Image Vocabulary. In Proc. ECCV.

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 2000. Additive
Logistic Regression: a Statistical View of Boosting. The Annals
of Statistics 38, 2.

Fu, H., COHEN-OR, D., DROR, G., AND SHEFFER, A. 2008.
Upright Orientation of Man-made Objects. ACM Trans. Graph.
27, 3.

GAL, R., AND COHEN-OR, D. 2006. Salient Geometric Features
for Partial Shape Matching and Similarity. ACM Trans. Graph.
25, 1.

GAMA, J., AND BrRAzDIL, P. 2000. Cascade Generalization.
Mach. Learn. 41, 3.

GEMAN, S., AND GEMAN, D. 1984. Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images. [EEE
Trans. PAMI 6, 6, 721-741.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2008. Randomized
Cuts for 3D Mesh Analysis. ACM Trans. on Graph. 27, 5.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. Consistent Seg-
mentation of 3D Models. Proc. SMI 33, 3.

GOLOVINSKIY, A., KiM, V. G., AND FUNKHOUSER, T. 2009.
Shape-based Recognition of 3D Point Clouds in Urban Environ-
ments. In Proc. ICCV.

HE, X., ZEMEL, R., AND CARREIRA-PERPINAN, M. A. 2004.
Multiscale Conditional Random Fields for Image Labeling. In
Proc. CVPR, vol. 2.

HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L.
2001. Topology Matching for Fully Automatic Similarity Esti-
mation of 3d Shapes. In SIGGRAPH.

HUANG, Q., WICKE, M., ADAMS, B., AND GUIBAS, L. 2009.
Shape Decomposition Using Modal Analysis. J. Computer
Graphics Forum 28.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 2007. Teddy:
A Sketching Interface for 3d Freeform Design. In SIGGRAPH.

JOHNSON, A., AND HEBERT, M. 1999. Using Spin Images
for Efficient Object Recognition in Cluttered 3D Scenes. /[EEE
Trans. PAMI 21, 5, 433-449.

KATtz, S., AND TAL, A. 2003. Hierarchical Mesh Decomposition
Using Fuzzy Clustering and Cuts. ACM Trans. Graphics.

KaAtz, S., LEIFMAN, G., AND TAL, A. 2005. Mesh segmentation
using feature point and core extraction. Visual Computer 21, 8.

KoNiIsHI, S., AND YUILLE, A. 2000. Statistical Cues for Do-
main Specific Image Segmentation With Performance Analysis.
Proc. CVPR.



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

KRAEVOY, V., JULIUS, D., AND SHEFFER, A. 2007. Model Com-
position From Interchangeable Components. In Proc. PG.

KUMAR, S., AND HEBERT, M. 2003. Discriminative Random
Fields: A Discriminative Framework for Contextual Interaction
in Classification. In Proc. ICCV.

LAFFERTY, J. D., MCCALLUM, A., AND PEREIRA, F. C. N.
2001. Conditional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. In /CML.

LAl Y.-K., HU, S.-M., MARTIN, R. R., AND ROSIN, P. L. 2008.
Fast Mesh Segmentation Using Random Walks. In ACM sympo-
sium on Solid and Physical Modeling.

LAVOUE, G., AND WOLF, C. 2008. Markov Random Fields for
Improving 3D Mesh Analysis and segmentation. In Eurograph-
ics workshop on 3D object retrieval.

L1, X., Gu, X., AND QIN, H. 2008. Surface matching using
consistent pants decomposition. In ACM Symposium on Solid
and Physical Modeling.

LM, E., AND SUTER, D. 2007. Conditional Random Field for 3D
Point Clouds With Adaptive Data Reduction. In Cyberworids.

LiN, H.-Y. S, L1ao, H.-Y. M., AND LIN, J.-C. 2007. Visual
Salience-Guided Mesh Decomposition. /EEE Transactions on
Multimedia 9, 1.

Liu, R., AND ZHANG, H. 2004. Segmentation of 3D Meshes
Through Spectral Clustering. In Proc. PG.

Liu, R. F., ZHANG, H., SHAMIR, A., AND COHEN-OR, D. 2009.
A Part-Aware Surface Metric for Shape Analysis. Computer
Graphics Forum, (Eurographics 2009) 28, 2.

MANGAN, A. P., AND WHITAKER, R. T. 1999. Partitioning 3D
Surface Meshes Using Watershed Segmentation. [EEE Trans.
on Vis. and Comp. Graph. 5, 4.

MUNOZ, D., VANDAPEL, N., AND HEBERT, M. 2008. Directional
Associative Markov Network for 3-D Point Cloud Classification.
In Proc. 3DPVT.

PEKELNY, Y., AND GOTSMAN, C. 2008. Articulated Object Re-
construction and Markerless Motion Capture from Depth Video.
J. Computer Graphics Forum 27, 399-408.

SCHNITMAN, Y., CASPI, Y., COHEN-OR, D., AND LISCHINSKI,
D. 2006. Inducing Semantic Segmentation From an Example.
In Proc. ACCV.

SHAMIR, A. 2008. A Survey on Mesh Segmentation Techniques.
Computer Graphics Forum 26, 6.

SHAPIRA, L., SHALOM, S., SHAMIR, A., ZHANG, R. H., AND
COHEN-OR, D. In Press. Contextual Part Analogies in 3D Ob-
jects. International Journal of Computer Vision.

SHLAFMAN, S., TAL, A., AND KATZ, S. 2002. Metamorphosis
of Polyhedral Surfaces Using Decomposition. In Eurographics.

SHOTTON, J., JOHNSON, M., AND CIPOLLA, R. 2008. Semantic
Texton Forests for Image Categorization and Segmentation. In
Proc. CVPR.

SHOTTON, J., WINN, J., ROTHER, C., AND CRIMINISI, A.
2009. TextonBoost for Image Understanding: Multi-Class Ob-
ject Recognition and Segmentation by Jointly Modeling Texture,
Layout, and Context. /nt. J. Comput. Vision 81, 1.

11

SIMARI, P., KALOGERAKIS, E., AND SINGH, K. 2006. Fold-
ing Meshes: Hierarchical Mesh Segmentation Based on Planar
Symmetry. In SGP.

SIMARI, P., NOWROUZEZAHRAI, D., KALOGERAKIS, E., AND
SINGH, K. 2009. Multi-objective shape segmentation and label-
ing. Computer Graphics Forum 28, 5.

TORRALBA, A., MURPHY, K. P., AND FREEMAN, W. T. 2007.
Sharing Visual Features for Multiclass and Multiview Object De-
tection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 5.

Tu, Z., CHEN, X., YUILLE, A., AND ZHU, S.-C. 2005. Im-
age Parsing: Unifying Segmentation, Detection, and Recogni-
tion. International Journal of Computer Vision 63, 2.

Tu, Z. 2008. Auto-context and its Application to High-level Vision
Tasks. In Proc. CVPR.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2005. Feature-
based Surface Parameterization and Texture Mapping. ACM
Trans. Graph. 24, 1.

A Unary Features

For each face ¢ in a mesh, we compute a 375 + 35|C|-dimensional
feature vector x; to be used in the Unary Energy Term (Equation 3 ).
Before computing any features, we normalize the scale of the mesh
according to the 30th percentile of geodesic distances between all
pairs of vertices. The features are as follows:

a) Curvature features: Curvatures have been used for partial match-
ing (e.g., [Gal and Cohen-Or 2006]). Around each face, we fit cubic
patches of various geodesic radii (1%, 2%, 5%, 10% relative to the
median of all-pairs geodesic distances). The patches are fitted us-
ing the face centers and normals and every sample is weighted with
its face area. Let k1 and k2 be the principal curvatures of a patch.
We include the following features: k1, |k1|, k2, |k2|, k1k2, |k1k2],
(k1 + k2)/2, |(k1 + k2) /2], k1 — k2, yielding 36 features total.

b) PCA features: We compute the singular values s1, s2, s3 of the
covariance of local face centers (weighted by face area), for various
geodesic radii (5%, 10%, 20%, 30%, 50%), and add the following
features for each patch: s1/(s1 + s2 + $3), s2/(s1 + s2 + s3),
s3/(s1+s2+s3), (s1+s2)/(s1+52+53), (s1+53)/(s1+52+53),
(s2 + s3)/(s1 + s2 + 83), 81/82, 51/83, S2/83, 1/82 + $1/83,
S1/82 + s2/s3, $1/s3 + s2/s3, yielding 75 features total.

¢) Shape diameter: The Shape Diameter Function (SDF) [Shapira
et al. In Press] is computed using cones of angles 30, 60, 90, 120.
For each cone, we get the weighted average, median, and squared
mean of the samples. We include these shape diameters and their
logarithmized versions with different normalizing parameters o« =
1, @ = 2, a = 4, a = 8. This yields 60 features representing
different moments and approximations of the local shape diameter.

d) Distance from medial surface: For each of the cones above,
we compute the diameter of the maximal inscribed sphere touch-
ing each face center and the corresponding medial surface point is
roughly its center [Liu et al. 2009]. Then we send rays from this
point uniformly sampled on a Gaussian sphere, gather the intersec-
tion points and measure the ray lengths. As with the shape diameter
features, we use the weighted average, median and squared mean
of the samples, we normalize and logarithmize them with the same
above normalizing parameters. This yields 60 features.

e) Average Geodesic Distance: The Average Geodesic Distance
(AGD) function has been used for shape matching [Hilaga et al.
2001; Zhang et al. 2005]. The function measures how “isolated”
each face is from the rest of the surface e.g., limbs have usually



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010

higher AGD than other parts in humanoid models. The AGD for
cach face is computed by averaging the geodesic distance from
its face center to all the other face centers. In our case, we also
consider the squared mean and the 10th, 20th, ..., 90th percentile.
Then, we normalize each of these 11 statistical measures by sub-
tracting its mimimum over all faces.

/) Shape contexts: Shape contexts have been used for 2D shape
matching [Belongie et al. 2002]. For each face, we measure the
distribution of all the other faces (weighted by their area) in loga-
rithmic geodesic distance bins and uniform angle bins, where an-
gles are measured relative to the normal of each face. We use 5
geodesic distance bins and 6 angle bins, yielding 30 features total.

g) Spin images: Spin images [Johnson and Hebert 1999] are created
with a fixed 8 x 8 bin resolution, yielding 64 features.

h) Orientation features: We also include the x, y, z coordinates of
each face center in the case that the training dataset is oriented.

i) Contextual label features: The above features provide a feature
vector x, which are used to learn contextual features, as described
in Section 3.4. The output of a JointBoost classifier provides per-
face probabilities P(c|x). The contextual features are histograms
of these probabilities around each face:

>

Jrdp <dist(i,j) <dp41

P = aj - P(c; =1) (14)

where the bin b contains all faces j with distance range [dy, dp+1]
from face i. The a; is the area of face j, normalized by the sum
of face areas in the mesh. The distances between faces are mea-
sured from shortest parts (thus, approximating geodesic distances),
as well as the Principal Component Axes and dominant symmetry
axes of the mesh (measured in absolute values, since the principal
axes are uniquely defined up to their sign). We use B = 5 ranges of
distances [dy, dp+1) where dy, are chosen in the logarithmic space
of [0, max(max(dist(¢, j)))], yielding 35|C| contextual features.
i J

B Pairwise Features

For each pair of adjacent faces ¢ and j, the following 191-
dimensional feature vector y;; is computed, for use in the Pairwise
Energy Term (Section 3.2). We chose features that are potentially
indicative of boundaries between parts.

a) Dihedral angles: Let w;; be the exterior dihedral angle between
faces ¢ and j. The basic feature is given as min(w;;/m,1). We
also compute the average of the dihedral angles around each edge
at geodesic radii of 0.5%, 1%, 2%, 4% of the median of all-pairs
geodesic distances in the mesh. We then exponentiate each of the
above features with each exponent in the range 1 to 10. This yields
50 dihedral angle features in total.

b) Curvature and third-order surface derivatives: We first compute
the curvature and the derivative-of-curvature tensor per mesh vertex
at geodesic radii of 0.5%, 1%, 2%, 4% of the median of all-pairs
geodesic distances. For each scale, we include the principal curva-
tures and the curvature derivatives along the principal directions (in
order to assign curvature to each edge, we average the correspond-
ing curvature values of its vertices). This yields 16 features.

b) Shape diameter differences: For each pair of adjacent faces, we
include the absolute values of the differences between their corre-
sponding 60 shape diameter features (as described above).

d) Distance from medial surface differences: Similarly, we include
the absolute difference of the 60 distance-from-medial-surface fea-
tures between adjacent faces (as described above).

12

e) Contextual label features: We also use pairwise contextual fea-
tures, as described in Section 3.4. The above features form an initial
feature vector y;;. We learn a JointBoost classifier p(c; # ¢;j|¥i;5),
and then bin them, as with the unary contextual features. Here, we
bin them based only on geodesic distances in logarithmic space up
to 5% of the median of all-pairs geodesic distances in the mesh.
This yields 5 pairwise contextual features in total.



