
CSE 3401 3.0 Functional and Logic Prog./Intro. to AI & LP Dept. of Computer Science & Engineering
Fall 2012 York University

Assignment 4
Total marks: 85.

Out: November 26
Due: December 3 at 23:55

Your report for this assignment should be the result of your own individual work. Take care to avoid
plagiarism (“copying”). You may discuss the problems with other students, but do not take written
notes during these discussions, and do not share your written solutions.

In this assignment, you are supplied with some starter code and have to design a program that plays a
slightly modified version of Othello against a human user.

1 Modified Othello
Othello is a boardgame that is played with black and white stones placed on a chessboard. The players
(black and white) take turns placing stones on the board. Occasionally, one of the players might have
nowhere to place their colored stone. In this case their only valid move is to play a “pass” where they
do not place any stones. The next player then takes their turn. A state where neither player can place
a stone is a terminal state. In the original Othello, the winner of a terminal state is the player who has
more stones on the board. However, in the modified version that you will implement, the winner of a
terminal state is the player who has less stones on the board. A tie is declared in a terminal state if
the number of white and black stones are equal.

The game begins with four stones placed in a square in the middle of the grid, two white stones
and two black stones (Figure 1). Player 1 (black) makes the first move.

To understand rules of the game, it is useful to think of the 8 directions, N (north), NE (north-east),
E (east), SE (south-east), S (south), SW (south-west), W (west) and NW (north-west). Viewing the
top of the board as being North, these directions specify 8 lines moving away from any position on
the board.

At each player’s turn, the player may place a stone (of her color) on any square s of the board such
that:

• Along at least one of the 8 direction from the square s we have a sequence of one or more
opponent stones followed by the player’s stone (with no empty squares in between). Note that
we can start looking for legal places to put our stone by considering only those squares that are
adjacent (in one of the directions) to an opponent’s stone.

1



Figure 1: Initial State

Figure 2: Possible moves of player 1 (black)

For example, from the initial state black can play in any of positions indicated by light-gray pieces
in Figure 2.

After placing their stone, the board is updated as follows:

• Looking along all 8 directions, any sequence of opponent stones that are now bracketed by the
player’s newly placed stone and some previously placed player’s stone (again with no empty
squares in between) are now flipped in color to become player stones. Note that placing a single
stone could cause many opponent stones to flip in different directions.

For example, if black decided to put a piece in the topmost location (6-d on the example figures),
one white piece gets turned over, so that the board is transformed to the state as shown in Figure 3.

Now white (player 2) plays. All of white’s possibilities at this time are show as gray stones in
Figure 4.

If white moves to 4-c this will reverses one black piece as shown in Figure 5.
Othello is also commonly called reversi, and to get a better feel for the game you can play it at a

number of on-line sites. For example, http://gameknot.com/pg/reversi.htm shows also

2



Figure 3: State after the move of player 1 (black).

Figure 4: Possible moves of player 2 (white)

the allowed moves when it is your turn. Remember however that in this assignment the winner is the
player with the fewer stones on the board at the end.

2 The Assignment
You will be provided with the following PROLOG code (available for download from the course web
page (follow the Assignment 4 link) :

• An implementation of an interactive depth-first minimax game tree search routine in the file
play.pl. This file will not work on its own as it needs the definitions of several game-
specific predicates. You will not change this file, but please read carefully the code there to
see what predicates must be implemented and how they are used in the tree search. To invoke
the interactive shell you need to type the query play. Assuming all required predicates have
already been defined, the interactive game playing shell will prompt the human player to input
moves. The player can enter a move (for this game a position pair like “[1,3]”), which will be

3



Figure 5: State after the move of player 2 (white).

then checked for validity (using a predicate you have to write). To play a “pass” move simply
enter ‘n’. Your validmove predicate should check the proposed move allowing a pass only
if no other move is legal. Note that read(Proposed) is used to read the user’s move—this
will bind the variable Proposed to anything the user enters; you have to check that they have
entered a valid move in the right syntax (i.e. a pair of numbers enclosed in brackets, or the
character ‘n’). When it is the computer’s turn the engine will invoke a mini-max search for
the best move. This search is done to a bounded depth, and you can set the depth bound. You
should set a bound that yields reasonable performance.

• Some starter code for your Othello implementation is in the file othello.pl. You are given
a prespecified state representation of the game as a list of lists. The 6x6 board is treated as a two
dimensional array indexed by a pair of numbers [X, Y ] where these numbers are in the range
0–5. The file also contains a number of utility routines that allow you to set and get indexed
squares on the board.

You have to define various predicates to interface with the game tree search routine. This in-
volves writing code to generate moves in the game, testing whether or not positions are terminal,
evaluating the heuristic merit of positions in the game, etc. Full documentation on the predi-
cates needed by the game tree search routine is provided at the beginning of the file play.pl.
Please do not change play.pl, all your implementation must be done in othello.pl.

• There is an example implementation of an interactive tic-tac-toe game in the file ttt.plwhere
player 1 (MAX) is a human and player 2 (Min) is the computer. This sample game illustrates
how to implement the routines required by the game tree search. To run the game, simply load
file ttt.pl and enter the query play. You will be prompted to choose your first move (i.e.
a number between 1 to 9 followed by a period). Then, computer will choose a move, and it’s
your turn again, and so on.

4



The assignment is broken into 3 main parts: (1) implementing a program to play Othello on a
6x6 board, (2) designing a heuristic function, and an optional part (3) which involves adding alpha-
beta pruning to the game tree search routine. These 3 main parts are described in more detail below.
Please note that your implementation should contain sufficient comments and not be contorted or
overly complex. Bad implementation style may cause deductions of up to 10%.

2.1 Part I: Othello (Out of 75)
Implement the Othello game by adding your code to the supplied starter file othello.pl. In
order to accomplish this you have to implement several predicates (feel free to define you own helper
predicates for more complex predicates like nextState):

1. initialize(InitialState,InitialPlyr)

2. winner(State,Plyr)

3. tie(State)

4. terminal(State)

5. moves(Plyr,State,MvList)

6. nextState(Plyr,Move,State,NewState,NextPlyr)

7. validmove(Plyr,State,Proposed)

8. h(State,Val)

9. lowerBound(B)

10. upperBound(B)

Most of these predicates are based on the given state representation. Utilize the given utilities
(e.g. get and set a value at a position) to determine the possible next moves: you must implement
the predicate moves(Plyr,State,MvList) so that it returns a list MvList of all legal moves
Plyr can make in the given state State. The list of moves returned by this predicate should be
sorted by position in order left to right, top to bottom. E.g., if a move into positions [1, 1], [0, 0],
[2, 7],[0, 2], [1, 5] are all possible, then you should return this list of moves in the order [0, 0], [0, 2],
[1, 1], [1, 5], [2, 7].

Similarly, you must implement the predicate nextState(Plyr,Move,State,NewState,
NextPlyr) that changes the current board State by playing Move. (Remember that applying a
move can cause changes along several different directions.) You can use the given helper predicate
showState to debug nextState. In your implementation account for the fact that the game can

5



end with a tie and implement the tie and winner predicates. Note that the player with less stones
at the end is the winner.

Note that it is necessary to accommodate null moves (since there are positions where one player
cannot move) both in the user input and during the minimax search. A simple way of accomplishing
this is to have moves return the list [n] in this case, and when nextState is passed an n move it
can return an unchanged state as the new state, and the other player as the new player.

The predicate h(State,Val) requires that you design a heuristic function for the game. See
Part II before doing so.

What to hand in:

1. Physical Copy A listing of your code (all relevant predicate listings). Be sure to document
your predicate definitions well.

2. Physical Copy Download and print file testboards.pdf. Write down your name and
student number on the top of the page. Download file testboards.pl and perform the tests
requested in the testboards.pdf for the MiniMax algorithm. Fill out the top table

3. Electronic Copy Submit your othello.pl (using the submit command). Make sure you
fill out the identification portion at the beginning of the file. Do not include any of the code in
play.pl).

2.2 Part II: State Evaluation Function (Out of 10)
As mentioned above, play.pl requires implementing the heuristic function h(S, V ). If you decide
NOT to do part II, to get credit for part I, you need to define a very simple heuristic instead: your
h(S, V ) can return V = 0 for any non-terminal state S, and if S is a terminal state, h must return a
positive value (say 100) for a win state, a negative value (say -100) for losing state, and 0 for a tie
state. Clearly, this h provides no guidance in the depth-bounded search.

If you decide to do part II, you have to implement a smarter heuristic function as described below.
In either case, note that the traces of your program required in part I, are based on the heuristic that
you implement.

Below, we give you some ideas of good heuristics for the original Othello game. You have to
adjust these for our modified version of the game where the player with the fewest stones on the board
wins at the end.

2.2.1 Heuristic Functions for the Original Othello Game

Since at the end, the player with more stones wins the game, you might think that the evaluation
function h(s) = V 1−V 2 (where V 1 and V 2 are the number of stones for player 1 and 2, respectively),
is ideal. This is only true if we expand all nodes in the search tree to reach the terminal nodes (which

6



Figure 6: Maximum stones is not a good strategy: white has a lot more stones, while black has only
1. It is black’s turn. So, she puts a stone in a8, white has to pass, then black puts a stone in h1, white
passes, black plays h8, while passes, and finally black plays a1. Black wins: 40 black stone versus 24
white stones!

is practically impossible). For a non-terminal state, having more stones has no meaning (it could even
be worse as seen in Figure 6) since many flips might occur in future moves.

Instead, we focus more on the stable stones on the board, i.e. those stones that cannot be flipped
anymore. Corner positions, once played, remain immune to flipping for the rest of the game (because
there can never be an opposite color stone behind them to create a flip): thus a player can use a piece
in a corner of the board to anchor groups of pieces (starting with the adjacent edges) permanently.
So capturing a corner often proves an effective strategy when the opportunity arises. More generally,
a piece is stable when, along all four axes (horizontal, vertical, and each diagonal), it is either on a
boundary of the game board, or in a filled row, or next to a stable piece of the same color. The more
stable stones you have (and the less stable stone your opponent has) the better. So, you may count the
number of stable stones for both players and use them to obtain a good measure to evaluate states.

Another idea is mobility. An opponent playing with reasonable strategy will not so easily relin-
quish the corner or any other good moves for you to play. So to achieve these good moves, you must
force your opponent to play moves which make available those good moves. The best way to achieve
this involves reducing the number of moves available to your opponent. If you consistently restrict
the number of legal moves your opponent can make, then sooner or later they will have to make an
undesirable move. An ideal position involves having all your pieces in the center surrounded by your
opponent’s pieces. In such situations you can dictate what moves your opponent can make.

Note that the above ideas are with respect to the original Othello (taken from Wikipedia) and may
require some adjustment to be applicable to our modified version of the game. It is not required, but
if you want, you can go beyond these ideas. You can do your own research to find a wide range of
other good heuristics (for example, a good place to start is
http://www.radagast.se/othello/Help/strategy.html). We may give up to 5 bonus
points for implementing an advanced heuristic function.

7



What to hand in:

1. Physical Copy, at most 1 page An English description and justification of the heuristic you
implemented. You are welcome to do a little bit research of your own to come up with a better
evaluation function. Make sure to cite all references you used (if any) for this question.

2. Physical Copy A listing of the code implementing your heuristic function.

3. Electronic Copy Your implementation of the predicate h must be in the othello.pl. So,
no extra submission is required. You just submit othello.pl as requested in Part I.

2.3 Optional Part III: Alpha-Beta Pruning (Worth Up To 5 Bonus Points)
The play predicate is based on depth-bounded, depth-first, minimax evaluation; but it does no prun-
ing. This part asks you to replace the predicate mmeval(Plyr,State,Value,Move,Depth,
StatesSearched) with a new predicate abmmeval, that evaluates states using minimax with
alpha-beta pruning. The arguments to this predicate can be of your own choosing.

Place your alpha-beta implementation in a file called abplay.pl. This file should contain all
of the functionality of play.pl except that abmmeval replaces mmeval. To do this, first copy
play.pl into a new file called abplay.pl, and then make necessary changes there.

What to hand in:

1. Physical Copy A listing of your alpha-beta implementation. Be sure to document your code.

2. Physical Copy Repeat the tests you did in part I, but now based on your alpha-beta search
engine. Complete the table at the bottom of file testboards.pdf accordingly. Also, on
page 2 of testboards.pdf, write one or two paragraphs discussing your results on the two
tables.

3. Electronic Copy Submit the file abplay.pl electronically.

To hand in your report for this assignment, put all your files in a directory a4answers, submit
it electronically, and submit a printout in the 3401 drop box in LAS by the deadline. To submit
electronically, use the following Prism lab command:

submit 3401 a4 a4answers

Your Prolog code should work correctly on Prism.

8


