
p. 1 of 9

Written Test - Version B
CSE 2031 3.0
Section E, Fall 2012

Family Name:

Given Name(s):

Student Number: | | | | | | | | | |

Guidelines and Instructions:

1. This is a 110-minute test. You can use the textbook, but no electronic aids such as
calculators, cellphones etc.

2. Answer questions in the space provided. If you need more space, use the back of
the page. Clearly indicate that your answer continues on the back of the page.

3. Write legibly. Unreadable answers will not be marked.

4. Keep your eyes on your own work. At the discretion of the invigilators, students
may be asked to move.

Question Out of Mark

Q1 10

Q2 5

Q3 15

Q4 20

Q5 20

Q6 30

Total 100

Letter grade

p. 2 of 9
Q1. [10 marks] The following program compiles and runs with no problems. Indicate

what the output will be if the input is the number 9. Explain why.

1 #include <stdio.h>

2 #define clone(x) x;x

3 #define remove

4 main()

5 {

6 int i;

7 scanf("%d",&i);

8 clone(i--);

9 switch (i)

10 {

11 case 9: printf("NINE\n");

12 case 8: printf("EIGHT\n");

13 #ifdef remove

14 case 7: printf("SEVEN\n");

15 #endif

16 default: printf("OTHER\n");

17 }

18 }

The output will be:

SEVEN

OTHER

clone(i--); will expand to i--;i--;. As a result, the value of i at the switch
statement will be 7.

Since remove is defined, the preprocessor directives do not have any effect. As a
result, the code after case 7 will execute. Since there is no break;, the code after
default will execute as well.

No marks if there is no explanation. Partial marks for correct output with incom-
plete explanation. Even less partial marks for incorrect output, but partially correct
explanation.

p. 3 of 9
Q2. [5 marks] The following program compiles and runs with no problems. Indicate

what the output of the program is going to be (no explanation necessary).

1 #include <stdio.h>

2 main() {

3 int i; int j;

4 int *p; int *q;

5

6 p = &i;

7 q = &j;

8 i = 4;

9 j = 5;

10 q = p;

11 *q = 6;

12 printf("%d %d %d %d\n", i, j, *p, *q);

13 }

The output will be: 6 5 6 6.

5 marks all or nothing.

p. 4 of 9
Q3. [15 marks] The following program attempts to read a string, save it in memory, and

then reproduce it on the screen. It compiles with no problems. However, when run
it produces a segmentation fault. Your task is to:

(a) Explain the reason for the segmentation fault.

(b) Describe how you would fix the problem.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 void allocate(char* p) {

5 p = (char *) malloc (30 * sizeof(char));

6 }

7

8 int main()

9 {

10 int i;

11 char *str;

12 allocate(str);

13 for (i = 0; i < 20; i++) str[i] = getchar();

14 str[20] = ’\0’;

15 printf("%s", str);

16 }

The reason for the segmentation fault is that the str pointer does not point to allo-
cated memory, so even after only one character is entered there will be a segmenta-
tion fault in line 13.

The allocate function appears to perform the necessary memory allocation. How-
ever, due to call-by-value, it only has a copy of the str pointer, and it cannot change
where it points to. As a result, the allocated memory becomes garbage as soon the
execution of the allocate function finishes.

The problem can be fixed by either inlining the allocate function, i.e. copying its
code to the main function, or by passing a char ** to it, such as &str.

10 marks for a correct explanation of the problem, 5 marks for the fix. Partial marks
are possible if the explanation is incomplete but hints at an understanding of the
problem.

p. 5 of 9
Q4. [20 marks] The following program attempts to read 40 lines of text, where each line

is guaranteed to be exactly 20 characters (including the newline). It compiles with
no errors, but produces a segmentation fault when run because it has not allocated
any memory.

In your answer, indicate what lines of code you would add and where to fix this
problem. For example, say something like: “I would add the line i++; between
lines 9 and 10.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #define LINESNO 40

4 #define CHARNO 20

5

6 int main()

7 {

8 int i,j;

9 char **lines;

10 for (i = 0; i < LINESNO; i++)

11 {

12 char *line = lines[i];

13 for (j = 0; j < CHARNO; j++) line[j] = getchar();

14 line[CHARNO] = ’\0’;

15 }

16 for (i = 0; i < LINESNO; i++) printf("%s", lines[i]);

17 }

The lines string array must be allocated by adding the following line between lines
9 and 10:

lines = (char **) malloc (LINESNO * sizeof(char *));

Each string must also be allocated. This can be done by adding the following line
between lines 11 and 12:

lines[i] = (char *) malloc ((CHARNO + 1) * sizeof(char));

The + 1 in the above line is to ensure enough room for the null character.

10 marks for each added line. Other ways to allocate the memory may be possible
and should receive full marks if correct. Partial marks are possible for incorrect
solutions that demonstrate an understanding of the issue at hand. No marks for
changing the program to use arrays.

p. 6 of 9
Q5. [20 marks] The following program is split across three different files as shown be-

low. Assuming that we attempt to compile it with cc q5.c q5fun.c, indicate which
one of the following is true:

(a) There is a compile-time error. If so, describe what the problem is (you don’t
have to describe a fix).

(b) There is a runtime error. If so, describe why this happened (you don’t have to
describe a fix).

(c) The program compiles and runs with no problems. If so, indicate what the
output will be.

q5.c
1 #include <stdio.h>

2 #include "q5.h"

3 int number;

4 main() {

5 number = 5;

6 printf("%d\n",fun(2));

7 printf("%d\n",number);

8 }

q5.h
1 extern int number;

2 int fun(int);

q5fun.c
1 #include "q5.h"

2 int fun(int x) {

3 return x + number++;

4 }

The program compiles and runs with no problems. The output will be:

7

6

20 marks, all or nothing.

p. 7 of 9
Q6. [30 marks] Recall the following linked list data structure that we saw in class.

struct list {

int data;

struct list *next;

};

Assume that a program has used this structure to build the following linked list.

1 2 NULLhead

For each of the code segments below and in the following pages, draw a diagram
that shows what the list will look like after its execution. If some list element has
become garbage, indicate that clearly. The type of variable head is struct list *.

Segment 1
head = head->next;

6 points, all or nothing, per each segment. Garbage must be shown for full marks.
Garbage shown here in green.

1 2 NULL

head

p. 8 of 9
Segment 2

head->next->next = head;

1 2head

Segment 3
head->next = NULL;

1 NULL 2 NULLhead

p. 9 of 9
Segment 4

head->next->next = head;

head = head->next;

head->next->next = NULL;

2 1 NULLhead

Segment 5
head->next = head;

1 2 NULLhead

