
1

UNIX Shell Scripts

CSE 2031
Fall 2012

1 November 15, 2012

What Is a Shell?

•  A program that
interprets your requests
to run other programs

•  Most common Unix
shells:
–  Bourne shell (sh)
–  C shell (csh - tcsh)
–  Korn shell (ksh)
–  Bourne-again shell

(bash)
•  In this course we focus

on Bourne shell (sh).
2	

The Bourne Shell

 A high level programming language
 Processes groups of commands stored in files

called scripts
 Includes

 variables
 control structures
 processes
 signals

3	

Executable Files

 Contain one or more shell commands.
 These files can be made executable.
 # indicates a comment

 Except on line 1 when followed by an “!”

% cat welcome
#!/bin/sh
echo ‘Hello World!’

4	

Executable Files: Example
% cat welcome
#!/bin/sh
echo ‘Hello World!’
% welcome
welcome: execute permission denied
% chmod 755 welcome
% ls -l welcome
-rwxr-xr-x 1 bil faculty 30 Nov 12 10:49 welcome
% welcome
Hello World!
% welcome > greet_them
% cat greet_them
Hello World!

5

Executable Files (cont.)

 If the file is not executable, use “sh” followed
by the file name to run the script.

 Example:
% chmod 644 welcome
% ls -l welcome
-rw-r--r-- 1 bil faculty 30 Nov 12 10:49 welcome
% sh welcome
Hello World!

2

Processes

7

Consider the welcome program.

Processes: Explanation

  Every program is a “child” of some other program.

  Shell fires up a child shell to execute script.

  Child shell fires up a new (grand)child process for each
command.

  Shell (parent) sleeps while child executes.

  Every process (executing a program) has a unique PID.

  Parent does not sleep while running background
processes.

8

Process-Related Variables
  Variable $$ is PID of the shell.

% cat shpid
#!/bin/sh
ps
echo PID of shell is = $$

% shpid
 PID TTY TIME CMD
 5658 pts/75 00:00:00 shpid
 5659 pts/75 00:00:00 ps
11231 pts/75 00:00:00 tcsh
PID of shell is = 5658

9

Process Exit Status

  All processes return exit status (return code).
  Exit status tells us whether the last command was

successful or not.
  Stored in variable $?
  0 (zero) means command executed successfully.
  0 is good; non-zero is bad.
  Good practice: Specify your own exit status in a shell

script using exit command.
 default value is 0 (if no exit code is given).

10

Process Exit Status: Example

  A more talkative grep.
% cat igrep
#!/bin/sh
Arg 1: search pattern
Arg 2: file to search

grep $1 $2
if test $? -ne 0
then
 echo Pattern not found.
fi

% igrep echo phone
echo –n “Enter name: ”

% igrep echo2 chex
Pattern not found.

11

Redirection tricks

 Want to run a command to check its exit
status and ignore the output?
diff f1 f2 > /dev/null

 Want to combine standard error and
standard output?
diff f1 f2 > /dev/null 2>&1

12

3

Variables: Three Types

  Standard UNIX variables
 Consist of shell variables and environment variables.
 Used to tailor the operating environment to suit your needs.
 Examples: TERM, HOME, PATH
 To display your environment variables, type “set”.

  User variables: variables you create yourself.

  Positional parameters
 Also called read-only variables, automatic variables.
 Store the values of command-line arguments.

13

User Variables
 Syntax: name=value
 No space around the equal sign!
 All shell variables store strings (no

numeric values).
 Variable name: combinations of letters,

numbers, and underscore character (_)
that do not start with a number.

 Avoid existing commands and
environment variables.

 Shell stores and remembers these
variables and supplies value on demand.

14	

User Variables
 To use a variable: $varname
 Operator $ tells the shell to substitute the

value of the variable name.

15	

% cat ma
#!/bin/sh
dir=/usr/include/
echo $dir
echo dir
ls $dir | grep 'ma’

echo and variables

 What if I want to display the following?
$dir
 Two ways to prevent variable substitution:
echo ‘$dir’
echo \$dir
 Note:
echo “$dir” does the same as
echo $dir

 16

User Variables and Quotes
 If value contains no space, no need to

use quotes: dir=/usr/include/
 Unless you want to protect the literal $

17	

% cat quotes
#!/bin/sh
Test values with quotes
myvar1=$100
myvar2='$100'
echo The price is $myvar1
echo The price is $myvar2

User Variables and Quotes

 If value contains one or more spaces:
 Use single quotes for NO interpretation of

metacharacters (protect the literal)
 Use double quotes for interpretation of

metacharacters

18

4

Example
% cat quotes2
#!/bin/sh
myvar=`whoami`
squotes='Today is `date`, $myvar.'
dquotes="Today is `date`, $myvar."
echo $squotes
echo $dquotes

19

Example
% cat twodirs
#!/bin/sh
The following needs quotes
dirs="/usr/include/ /usr/local/"
echo $dirs
ls -l $dirs

20

Command Line Arguments

  Command line arguments stored in variables are called
positional parameters.

  These parameters are named $1 through $9.

  Command itself is in parameter $0.

  In diagram format:

command arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

21

Example 1

% cat showargs
#!/bin/sh
echo First four arguments from the
echo command line are: $1 $2 $3 $4

% showargs William Mary Richard James
First four arguments from the
command line are: William Mary Richard James

22

Example 2
% cat chex
#!/bin/sh
Make a file executable
chmod u+x $1
echo $1 is now executable:
ls –l $1

% sh chex chex
chex is now executable:
-rwx------ 1 bil faculty 86 Nov 12 11:34 chex

% chex showargs
showargs is now executable:
-rwx------ 1 bil faculty 106 Nov 2 14:26 showargs

 23

Command Line Arguments

$# represents the number of command line arguments
$* represents all the command line arguments
$@ represents all the command line arguments

% cat check_args
#!/bin/sh
echo “There are $# arguments.”
echo “All the arguments are: $*”
or echo “All the arguments are: $@”

% check_args Mary Tom Amy Tony
There are 4 arguments.
All the arguments are: Mary Tom Amy Tony

24

5

Command Line Arguments

  $# does NOT include the program name
(unlike argc in C programs)

  $* and $@ are identical when not quoted: expand into
the arguments; blanks in arguments result in multiple
arguments.

  They are different when double-quoted:
  “$@” each argument is quoted as a separate string.
  “$*” all arguments are quoted as a single string.

25

$* versus $@ Example

% cat displayargs
#!/bin/sh
echo All the arguments are "$@".
countargs "$@"
echo All the arguments are "$*".
countargs "$*"

% cat countargs
#!/bin/sh
echo Number of arguments to countargs = $#

% displayargs Mary Amy Tony

26

Control Structures

  if then else
 for
 while
 case (which)
 until

27

if Statement and test Command

  Syntax:
if condition
then
 command(s)
elif condition_2
then
 command(s)
else
 command(s)
fi

  Command test is often used in condition.

28

if – then – else Example

% cat if_else
#!/bin/sh
echo -n 'Enter string 1: '
read string1
echo -n 'Enter string 2: '
read string2
if test $string1 = $string2
then
 echo 'They match!'
else
 echo 'No match!'
fi

% if_else
Enter string 1: acd
Enter string 2: 123
No match!

% if_else
Enter string 1: 123
Enter string 2: 123
They match!

29	

test Command

-e arg True if arg exists
-d arg True if arg is a directory
-f arg True if arg is an ordinary file
-r arg True if arg is readable
-w arg True if arg is writable
-x arg True if arg is executable
-s arg True if size of arg is greater than 0
! –d arg True if arg is not a directory

30

6

test Command (Numeric tests)

n1 –eq n2 n1 == n2
n1 –ge n2 n1 >= n2
n1 –gt n2 n1 > n2
n1 –le n2 n1 <= n2
n1 –ne n2 n1 != n2
n1 –lt n2 n1 < n2

Parentheses can be used to group conditions.
31

test Example 1

% cat check_file
if test ! -e $1
then
 echo "$1 does not exist."
 exit 1
else
 ls -l $1
fi

32

test Example 2

% cat check_file2
#!/bin/sh
if test $# -eq 0
then
 echo Usage: check_file file_name
 exit 1
fi
…

33

test Example 3

  What is wrong with the following script?

% cat chkex2
#!/bin/sh
Check if a file is executable.
if test -x $1
then
 echo File $1 is executable.
else
 echo File $1 is not executable.
fi

34

test and Logical Operators
  !, || and && as in C
  Following is better version of test Example 3
%cat chkex
#!/bin/sh
if test -e $1 && test -x $1
then
 echo File $1 is executable.
elif test ! -e $1
then
 echo File $1 does not exist.
else
 echo File $1 is not executable.
fi

35

for Loops

for variable in list
do
 command(s)
done

 variable is a user-defined variable.
 list is a sequence of strings separated by
spaces.

36

7

for Loop Example 1

% cat fingr
#!/bin/sh
for name in $*
do
 finger $name
done

 Recall that $* stands for all command line
arguments the user enters.

37

for Loop Example 2

% cat fsize
#!/bin/sh
for i in $*
do
 echo "File $i: `wc -c $i | cut -f1 -d" " ̀
bytes”
done

38

for Loop Example 3

% cat makeallex
Make all files in the working directory
executable.
for i in *
do
 chmod a+x $i
 ls -l $i
done

for Loop Example 4

% cat prdir
#!/bin/sh
Display all c files in a directory
specified by argument 1.

for i in $1/*.c
do
 echo "======= $i ======"
 more $i
done

40

Arithmetic Operations Using expr
  The shell is not intended for numerical work (use Java, C, or Perl

instead).
  However, expr utility may be used for simple arithmetic operations

on integers.
  expr is not a shell command but rather a UNIX utility.
  To use expr in a shell script, enclose the expression with

backquotes.
  Example:

#!/bin/sh
sum=`expr $1 + $2`
echo $sum

  Note: spaces are required around the operator + (but not allowed
around the equal sign).

41

expr Example
% cat cntx
#!/bin/sh
Count the number of executable files in …
the current working directory
count=0
for i in *
do
 if test -x $i
 then

 count=`expr $count + 1`
 ls -l $i

 fi
done
echo “There are $count executable files.”

42

8

while Loops

while condition
do
 command(s)
done

 Command test is often used in condition.
 Execute command(s)when condition is met.

43

while Loop Example

#!/bin/sh
Display the command line arguments, one per line.
count=1
argc=$#
while test $count -le $argc
do
 echo "Argument $count is: $1"
 count=`expr $count + 1`
 shift # shift arg 2 into arg 1 position
done

What happens if the while statement is as follows?
while test $count -le $#

44

until Loops

until condition
do
 command(s)
done

 Command test is often used in condition.
 Exit loop when condition is met.

45

until Loop Example

% cat grocery
#!/bin/sh
Enter a grocery list and …
store in a file indicated by $1

echo To end list, enter \"all\".
item=nothing
until test $item = “all”
do
 echo -n "Enter grocery item: "
 read item
 echo $item >> $1
done

46

until Loop Example Output

% grocery glist
To end list, enter "all".
Enter grocery item: milk
Enter grocery item: eggs
Enter grocery item: lettuce
Enter grocery item: all

% cat glist
milk
eggs
lettuce
all

47

break and continue

  Interrupt loops (for, while, until)

  break transfers control immediately to the statement
after the nearest done statement
 terminates execution of the current loop

  continue transfers control immediately to the nearest
done statement
 brings execution back to the top of the loop

  Same effects as in C.

48	

9

break and continue Example

#!/bin/sh
while true
do
echo “Entering ‘while’ loop ...”
echo “Choose 1 to exit loop.”
echo “Choose 2 to go to top of loop.”
echo -n “Enter choice: ”
read choice
if test $choice = 1
then
 break
fi

echo “Bypassing ‘break’.”

if test $choice = 2
then
 continue
fi

echo “Bypassing ‘continue’.”
done

echo “Exit ‘while’ loop.”

49

Shell Functions

  Similar to shell scripts.
  Stored in shell where it is defined (instead of in a file).
  Executed within sh

 no child process spawned
  Syntax:

function_name()
{
 commands
}

  Allows structured shell scripts

50

Example
#!/bin/sh
Function to log users
log()
{
 echo -n "Users logged on: " >> $1
 date >> $1
 who >> $1
}
Beginning of main script
log log1
log log2

51

Shell Functions (2)

  Make sure a function
does not call itself
causing an endless loop.

% cat makeit
#!/bin/sh
…
sort()
{
 sort $* | more

}
…

  Should be written:

% cat makeit
#!/bin/sh
…
sort()
{
 /bin/sort $* | more

}
…

52

Reading User Input

  Reads from standard input.

  Stores what is read in user variable.

  Waits for the user to enter something followed by
<RETURN>.

  Syntax:
read varname # no dollar sign $

  To use the input:
 echo $varname

53

Example 1

% cat greeting
#!/bin/sh
echo –n “Enter your name: ”
read name
echo “Hello, $name. How are you today?”

% greeting
Enter your name: Jane
Hello, Jane. How are you today?

54

10

Example 2
% cat doit
#!/bin/sh
echo –n ‘Enter a command: ’
read command
$command
echo “I’m done. Thanks”

% doit
Enter a command: ls lab*
lab1.c lab2.c lab3.c lab4.c lab5.c lab6.c
I’m done. Thanks

% doit
Enter a command: who
lan pts/200 Sep 1 16:23 (indigo.cs.yorku.ca)
jeff pts/201 Sep 1 09:31 (navy.cs.yorku.ca)
anton pts/202 Sep 1 10:01 (red.cs.yorku.ca)
I’m done. Thanks

 55

Reading User Input (2)

 More than one variable may be specified.

 Each word will be stored in separate variable.

 If not enough variables for words, the last
variable stores the rest of the line.

56

Example 3

% cat read3
#!/bin/sh
echo “Enter some strings: ”
read string1 string2 string3
echo “string1 is: $string1”
echo “string2 is: $string2”
echo “string3 is: $string3”

% read3
Enter some strings:
This is a line of words
string1 is: This
string2 is: is
string3 is: a line of words

 57

case Statement

case variable in
pattern1) command(s);;
pattern2) command(s);;
. . .
patternN) command(s);;
*) command(s);; # all other cases
esac

 Why the double semicolons?

58

case Statement Example
#!/bin/sh
Course schedule
echo -n "Enter the day (mon, tue, wed, thu, fri): "
read day
case $day in
 mon) echo 'CSE2031 2:30-4:30 CLH-H'

 echo 'CSE2021 17:30-19:00 TEL-0016';;
 tue | thu)

 echo 'CSE2011 17:30-19:00 SLH-E';;
 wed) echo 'No class today. Hooray!';;
 fri) echo 'CSE2031 2:30-4:30 LAB 1006';;
 *) echo 'Day off. Hooray!';;
esac

59

Shifting arguments

 What if the number of arguments is more than
9? How to access the 10th, 11th, etc.?

 Use shift operator.

60

11

shift Operator

 shift promotes each argument one
position to the left.

 Allows access to arguments beyond $9.
 Operates as a conveyor belt.

Shifts contents of $2 into $1
Shifts contents of $3 into $2
Shifts contents of $4 into $3 etc.

 Eliminates argument that used to be in $1
 After a shift, the argument count stored in
$# is automatically decreased by one.

61	

Example 1

% cat shiftex
#!/bin/sh
echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"
myvar=$1 # save the first argument
shift
echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"
echo "myvar = $myvar”

% shiftex 1 2 3 4 5 6 7 8 9 10 11 12
arg1 = 1, arg8 = 8, arg9 = 9, ARGC = 11
arg1 = 2, arg8 = 9, arg9 = 10, ARGC = 10
myvar = 1

 62

Example 2

% cat show_shift
#!/bin/sh
echo “arg1=$1, arg2=$2, arg3=$3”
shift
echo “arg1=$1, arg2=$2, arg3=$3”
shift
echo “arg1=$1, arg2=$2, arg3=$3”

% show_shift William Richard Elizabeth
arg1=William, arg2=Richard, arg3=Elizabeth
arg1=Richard, arg2=Elizabeth, arg3=
arg1=Elizabeth, arg2= , arg3=

63

Example 3

% my_copy dir_name filename1 filename2 filename3 …

This shell script copies all the files to

directory “dir_name”

% cat my_copy
#!/bin/sh
Script allows user to specify, as the 1st argument,
the directory where the files are to be copied.
location=$1
shift
files=$*
cp $files $location

64

Shifting Multiple Times

Shifting arguments three positions: 3 ways to write it

shift
shift
shift

shift; shift; shift

shift 3

65

Changing Values of Positional
Parameters
 Positional parameters $1, $2, … normally

store command line arguments.

 Their values can be changed using the set
command

 set newarg1 newarg2 …

66

12

Example

% cat setparm
#!/bin/sh
echo "Hello, $1. You entered $# command line argument(s). Today's date is ..."
date
set `date`
echo There are now $# positional parameters. The new parameters are ...
echo \$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6.

% setparm Amy Tony
Hello, Amy. You entered 2 command line argument(s). Today's date is ...
Sat Nov 27 11:55:52 EST 2010
There are now 6 positional parameters. The new parameters are ...
$1 = Sat, $2 = Nov, $3 = 27, $4 = 11:55:52, $5 = EST, $6 = 2010.

 67

Environment and Shell Variables

  Standard UNIX variables are divided into 2 categories:
shell variables and environment variables.

  Shell variables: apply only to the current instance of the
shell; used to set short-term working conditions.
 displayed using ‘set’ command.

  Environment variables: set at login and are valid for the
duration of the session.
 displayed using ‘env’ command.

  By convention, environment variables have UPPER
CASE and shell variables have lower case names.

68

Environment and Shell Variables (2)

  In general, environment and shell variables that have
“the same” name (apart from the case) are distinct and
independent, except for possibly having the same initial
values.

  Exceptions:
  When home, user and term are changed, HOME, USER

and TERM receive the same values.
  But changing HOME, USER or TERM does not affect home,
user or term.

  Changing PATH causes path to be changed and vice
versa.

69

Variable path

  PATH and path specify directories to search for
commands and programs.

cd # current dir is home dir
funcex # this fails because funcex
 # is in www/2031/Lecture9
set path=($path www/2031/Lecture9)
funcex # successful
  To add a path permanently, add the line to your .cshrc

file after the list of other commands.
set path=($path .)

70

Readings

  Sections 3.6 to 3.8, UNIX textbook
  Chapter 5, UNIX textbook

  Posted tutorial on standard UNIX variables
  Posted Bourne shell tutorial

  Most importantly, play with the scripts we
discussed in class

71

