UNIX Shell Scripts

CSE 2031
Fall 2012

What Is a Shell?

A program that
Interprets your requests

to run other programs r,’f.f'//
Most common Unix Dy
shells: "

Bourne shell (sh)
C shell (csh - tcsh)
Korn shell (ksh)
Bourne-again shell
(bash)

In this course we focus
on Bourne shell (sh).

The Bourne Shell

A high level programming language

Processes groups of commands stored in files
called scripts

Includes
variables

control structures
pProcesses
signals

Executable Files

Contain one or more shell commands.
These files can be made executable.

indicates a comment
Except on line 1 when followed by an

“'”

% cat welcome
#'!'/bin/sh
echo ‘Hello World!’

Executable Files: Example

% cat welcome

#!'/bin/sh

echo ‘Hello World!’

% welcome

welcome: execute permission denied
% chmod 755 welcome

ls -1 welcome

-rwxr-xr-x 1 bil faculty 30 Nov 12 10:49 welcome
% welcome

Hello World!

% welcome > greet them

% cat greet them

Hello World!

o°

Executable Files (cont.)

If the file is not executable, use “sh” followed
by the file name to run the script.

Example:
% chmod 644 welcome
% 1ls -1 welcome
-rw-r--r-- 1 bil faculty 30 Nov 12 10:49 welcome
% sh welcome
Hello World!

Processes

Consider the welcome program.

Processes: Explanation

Every program is a “child” of some other program.
Shell fires up a child shell to execute script.

Child shell fires up a new (grand)child process for each
command.

Shell (parent) sleeps while child executes.
Every process (executing a program) has a unique PID.

Parent does not sleep while running background
processes.

Process-Related Variables

Variable $5 is PID of the shell.

% cat shpid
#'!'/bin/sh
ps

echo PID of shell

% shpid

PID TTY
5658 pts/75
5659 pts/75
11231 pts/75

PID of shell 1is

is = $$

TIME CMD

:00:00 shpid
:00:00 ps
:00:00 tcsh

5658

Process Exit Status

All processes return exit status (return code).

Exit status tells us whether the last command was
successful or not.

Stored in variable $?
0 (zero) means command executed successfully.
0 is good; non-zero is bad.

Good practice: Specify your own exit status in a shell
script using exit command.

default value is O (if no exit code is given).

10

Process Exit Status: Example

A more talkative grep.
% cat igrep
#!'/bin/sh
Arg 1: search pattern
Arg 2: file to search

#

grep $1 $2
if test $? -ne 0O
then

echo Pattern not found.

fi

% igrep echo phone

144

echo —n “Enter name:

% igrep echo2 chex
Pattern not found.

11

Redirection tricks

Want to run a command to check its exit
status and ignore the output?
diff £f1 £2 > /dev/null

Want to combine standard error and
standard output?
diff f1 £2 > /dev/null 2>&l

12

Variables: Three Types

Standard UNIX variables
Consist of shell variables and environment variables.
Used to tailor the operating environment to suit your needs.
Examples: TERM, HOME, PATH
To display your environment variables, type “set”.

User variables: variables you create yourself.

Positional parameters
Also called read-only variables, automatic variables.
Store the values of command-line arguments.

13

User Variables

Syntax: name=value
No space around the equal sign!

All shell variables store strings (no
numeric values).

Variable name: combinations of letters,
numbers, and underscore character ()
that do not start with a number.

Avoid existing commands and
environment variables.

Shell stores and remembers these
variables and supplies value on demand.

User Variables

To use a variable: Svarname

Operator $ tells the shell to substitute the
value of the variable name.

% cat ma

#'!'/bin/sh
dir=/usr/include/
echo $dir

echo dir

ls $dir | grep 'ma’

echo and variables

What if | want to display the following?
Sdir

Two ways to prevent variable substitution:
echo ‘S$Sdir’
echo \$dir

Note:
echo “$dir” does the same as
echo $dir

16

User Variables and Quotes

If value contains no space, no need to
use quotes: dir=/usr/include/

Unless you want to protect the literal $

o

s cat quotes

#!'/bin/sh

Test values with quotes
myvarl=$100

myvar2='$100"

echo The price is $myvarl
echo The price is $myvar2

User Variables and Quotes

If value contains one or more spaces:

Use single quotes for NO interpretation of
metacharacters (protect the literal)

Use double quotes for interpretation of
metacharacters

18

Example

% cat quotes2

#!/bin/sh

myvar= whoami

squotes='Today is 'date , Smyvar.'
dquotes="Today is "date , $myvar."
echo Ssquotes

echo S$dquotes

19

Example

% cat twodirs
#!/bin/sh
The following needs quotes

dirs="/usr/include/ /usr/local/"
echo S$dirs

1ls -1 Sdirs

20

Command Line Arguments

Command line arguments stored in variables are called
positional parameters.

These parameters are named $1 through $9.
Command itself is in parameter $0.

In diagram format:

command argl arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg?9
$0 S$1 $2 $3 $4 $5 $6 S$7 $8 $9

21

Example 1

% cat showargs

#!/bin/sh

echo First four arguments from the
echo command line are: $1 $2 $3 $4

% showargs William Mary Richard James

First four arguments from the
command line are: William Mary Richard James

22

Example 2

% cat chex

#!/bin/sh

Make a file executable
chmod u+x $1

echo $1 is now executable:
1s -1 $1

% sh chex chex

chex is now executable:
—rwWX—————-— 1 bil faculty 86 Nov 12 11:34 chex

% chex showargs
showargs is now executable:
—~rwx-—--—-——-- 1 bil faculty 106 Nov 2 14:26 showargs

Command Line Arguments

S$# represents the number of command line arguments
$* represents all the command line arguments
$@ represents all the command line arguments

% cat check args

#'!'/bin/sh

echo “There are $# arguments.”

echo “All the arguments are: S$*”

or echo “All the arguments are: $@”

% check args Mary Tom Amy Tony
There are 4 arguments.
All the arguments are: Mary Tom Amy Tony

24

Command Line Arguments

$# does NOT include the program name
(unlike argc in C programs)

$* and $@ are identical when not quoted: expand into
the arguments; blanks in arguments result in multiple

arguments.

They are different when double-quoted:
“$@” each argument is quoted as a separate string.
“$*” all arguments are quoted as a single string.

25

S$* versus $@ Example

% cat displayargs

#!'/bin/sh

echo All the arguments are "$Q@Q".
countargs "$@"

echo All the arguments are "$*".

countargs "$*"
% cat countargs
#!'/bin/sh

echo Number of arguments to countargs

% displayargs Mary Amy Tony

S#

26

Control Structures

if then else
for

while

case (which)
until

27

If Statement and test Command

Syntax:

1f condition
then

command (s)
elif condition 2
then

command (s)
else

command (s)
fi

Command test is often used in condition.

28

if — then — else Example

% cat if else
#!'/bin/sh
echo -n 'Enter string 1: '
read stringl
echo -n 'Enter string 2: '
read string2
if test $stringl = $string2
then

echo 'They match!'
else

echo 'No match!'
fi

% 1f else
Enter string 1:
Enter string 2:
No match!

% 1f else
Enter string 1:
Enter string 2:
They match!

acd
123

123
123

test Command

-e arg
-d arg
-f arg

-r arg
-W arg
-X arg
-S arg

| —d arg

True If arg exists

True if arg is a directory

True if arg is an ordinary file

True if arg is readable

True if arg is writable

True if arg is executable

True if size of arg is greater than 0
True if arg is not a directory

30

test Command (Numeric tests)

n1 —eq n2 N1 ==n2

n1 —ge n2 n1 >=n2
n1 —gt n2 n1 > n2
n1 —le n2 N1 <=n2
N1 —ne n2 n1 1= n2
n1 -t n2 n1<n2

Parentheses can be used to group conditions.

31

test Example 1

% cat check file

if test ! -e S1

then
echo "$1 does not exist."
exit 1

else
1s -1 $1

fi

32

test Example 2

% cat check file2

#!/bin/sh

if test $# -eq O

then
echo Usage: check file file name
exit 1

fi

33

test Example 3

What is wrong with the following script?

% cat chkex2
#!/bin/sh
Check if a file is executable.
if test -x S1
then

echo File $1 is executable.
else

echo File $1 is not executable.
fi

34

test and Logical Operators

', || and &&asinC

Following is better version of test Example 3
scat chkex
#!'/bin/sh
if test -e $1 && test -x $1
then

echo File $1 is executable.
elif test ! -e $1
then

echo File $1 does not exist.
else

echo File $1 is not executable.
fi

35

for Loops

for variable in 1list
do
command (s)

done

variable is a user-defined variable.

list is a sequence of strings separated by
spaces.

36

for Loop Example 1

% cat fingr
#!/bin/sh
for name in $*
do

finger $name

done

Recall that $* stands for all command line
arguments the user enters.

37

for Loop Example 2

% cat fsize
#!/bin/sh
for i in S$*
do

eChO "File $i: \Wc -C $i I cut _fl _d" "we

bytes”
done

38

for Loop Example 3

% cat makeallex
Make all files in the working directory
executable.
for 1 in *
do
chmod a+x $i
ls -1 $i

done

for Loop Example 4

% cat prdir

#'!'/bin/sh

Display all c files in a directory
specified by argument 1.

#

for i in $1/*.c
do
echo " Si "

more S$i

done

40

Arithmetic Operations Using expr

The shell is not intended for numerical work (use Java, C, or Perl
instead).

However, expr utility may be used for simple arithmetic operations

on integers.
expr is not a shell command but rather a UNIX utility.

To use expr in a shell script, enclose the expression with
backquotes.

Example:
#'!'/bin/sh
sum="expr $1 + $2°

echo $sum

Note: spaces are required around the operator + (but not allowed
around the equal sign).

41

expr Example

$ cat cntx
#!'/bin/sh

Count the number of executable files in ..

the current working directory
count=0
for 1 in *
do
if test -x Si
then
count="expr S$count + 1°
1s -1 $i
fi
done
echo “There are $count executable files.”

42

while Loops

while condition
do
command (s)

done

Command test is often used in condition.
Execute command (s)when condition IS met.

43

while Loop Example

#!'/bin/sh
Display the command line arguments, one per line.
count=1
argc=5S#
while test $count -le $argc
do
echo "Argument $count is: $1"
count="expr S$count + 1°
shift # shift arg 2 into arg 1 position
done

What happens if the while statement is as follows?
while test $count -le S$#

44

until Loops

until condition
do
command (s)

done

Command test is often used in condition.
Exit loop when condition is met.

45

until Loop Example

% cat grocery

!/bin/sh

Enter a grocery list and ..
store in a file indicated by $1

H*+ F= H=

echo To end list, enter \"all\".
item=nothing
until test $item = “all”
do
echo -n "Enter grocery item: "
read item
echo Sitem >> $§$1
done

46

until Loop Example Output

% grocery glist
To end list, enter

Enter grocery item:
Enter grocery item:
Enter grocery item:

Enter grocery item:

"all".
milk
eggs
lettuce
all

% cat glist
milk

eggs
lettuce

all

47

break and continue

Interrupt loops (for, while, until)

break transfers control immediately to the statement
after the nearest done statement

terminates execution of the current loop

continue transfers control immediately to the nearest
done statement

brings execution back to the top of the loop

Same effects as in C.

break and continue Example

#!/bin/sh echo “Bypassing ‘break’.”
while true
do if test $choice = 2
echo “Entering ‘while’ loop ..." then
echo “Choose 1 to exit loop.” continue
echo “Choose 2 to go to top of loop.” fi
echo -n “Enter choice: ”
read choice echo “Bypassing ‘continue’.
if test $choice = 1 done
then
break echo “Exit ‘while’ loop.”

fi

49

Shell Functions

Similar to shell scripts.
Stored in shell where it is defined (instead of in a file).
Executed within sh
no child process spawned
Syntax:

function name ()

{

commands

}

Allows structured shell scripts

50

Example

#!'/bin/sh

Function to log users
log()

{

echo -n "Users logged on:
date >> $1
who >> $1
}
Beginning of main script
log logl
log log2

" >> $1

51

Shell Functions (2)

Make sure a function
does not call itself
causing an endless loop.

% cat makeit
#!'/bin/sh

éort()

{

sort $* | more

}

Should be written:

$ cat makeit
#!'/bin/sh

éort()

{

/bin/sort $* | more

}

52

Reading User Input

Reads from standard input.
Stores what is read in user variable.

Waits for the user to enter something followed by
<RETURN>.

Syntax:
read varname # no dollar sign $

To use the input:
echo $varname

53

Example 1

% cat greeting
#'!'/bin/sh
echo —n “Enter your name:

read name
echo “Hello, $name. How are you today?”

144

% greeting
Enter your name: Jane
Hello, Jane. How are you today?

54

Example 2

% cat doit

#!/bin/sh

echo —n ‘Enter a command: '’
read command

$command

echo “"I'm done. Thanks”

% doit

Enter a command: 1ls lab*
labl.c lab2.c lab3.c lab4d.c
I'm done. Thanks

$ doit
Enter a command: who
lan pts/200Sep 1 16:23

jeff pts/201Sep 1 09:31
anton pts/202Sep 1 10:01
I'm done. Thanks

lab5.c 1labé6.c

(indigo.cs.yorku.ca)
(navy.cs.yorku.ca)
(red.cs.yorku.ca)

55

Reading User Input (2)

More than one variable may be specified.
Each word will be stored in separate variable.

If not enough variables for words, the last
variable stores the rest of the line.

56

Example 3

% cat read3

#!'/bin/sh

echo “Enter some strings: ”
read stringl string2 string3
echo “stringl is: $stringl”
echo “string2 is: $string2”
echo “string3 is: $string3”

% read3

Enter some strings:

This is a line of words
stringl is: This

string2 is: is

string3 is: a line of words

57

case Statement

case variable in
patternl) command(s);;

pattern2) command(s);;
patternN) command(s);;
*) command (s) ; ;

esacC

Why the double semicolons?

all other cases

58

case Statement Example

#'!'/bin/sh

Course schedule

echo -n "Enter the day (mon, tue, wed, thu, fri): "

read day
case $day in
mon) echo
echo
tue | thu)
echo
wed) echo
fri) echo
*) echo

esacC

'"CSE2031 2:30-4:30 CLH-H'
'CSE2021 17:30-19:00 TEL-0016';;

'CSE2011 17:30-19:00 SLH-E';;
'No class today. Hooray!';;
'CSE2031 2:30-4:30 LAB 1006';;
'Day off. Hooray!';;

59

Shifting arguments

What if the number of arguments is more than
9? How to access the 10, 11t etc.?

Use shift operator.

60

shift Operator

shift promotes each argument one
position to the left.

Allows access to arguments beyond $9.
Operates as a conveyor belt.

Shifts contents of $2 into $1

Shifts contents of $3 into $2

Shifts contents of $4 into $3 etc.
Eliminates argument that used to be in $1

After a shift, the argument count stored in
S# Is automatically decreased by one.

Example 1

$ cat shiftex

#!/bin/sh

echo "argl = $§1, arg8 = $8, arg9 = $9, ARGC = S$#"
myvar=$1 # save the first argument

shift

echo "argl = $§1, arg8 = $8, arg9 = $9, ARGC = S#"

echo "myvar = Smyvar”

% shiftex 1 2 3 4 56 7 8 9 10 11 12
argl = 1, arg8 = 8, arg9 = 9, ARGC = 11
argl = 2, arg8 = 9, arg9 = 10, ARGC = 10

myvar = 1

62

Example 2

% cat show_shift

#!'/bin/sh

echo “argl=$1, arg2=$2, arg3=$3”"
shift

echo “argl=$1, arg2=$2, arg3=$3”"
shift

echo “argl=$1, arg2=$2, arg3=$3”"

% show _shift William Richard Elizabeth
argl=William, arg2=Richard, arg3=Elizabeth
argl=Richard, arg2=Elizabeth, arg3=
argl=Elizabeth, arg2= , arg3=

63

Example 3

$ my copy dir name filenamel filename2 filename3 ..

This shell script copies all the files to
directory “dir name”

% cat my copy

#!'/bin/sh

Script allows user to specify, as the 15t argument,
the directory where the files are to be copied.
location=$§1

shift

files=$*

cp $files S$Slocation

64

Shifting Multiple Times

Shifting arguments three positions: 3 ways to write it
shift

shift

shift

shift; shift; shift

shift 3

65

Changing Values of Positional
Parameters

Positional parameters $1, $2, ... normally
store command line arguments.

Their values can be changed using the set
command

set newargl newarg2 ..

66

Example

% cat setparm
#!/bin/sh

echo "Hello, $1. You entered $# command line argument(s). Today's date is ...’

date

set date

echo There are now $# positional parameters. The new parameters are ...
echo \$1 = $1,\$2 = $2,\$3 = $3, \$4 = $4,\$5 = $5, \$6 = 36.

% setparm Amy Tony

Hello, Amy. You entered 2 command line argument(s). Today's date is ...
Sat Nov 27 11:55:52 EST 2010

There are now 6 positional parameters. The new parameters are ...

$1 = Sat, $2 = Nov, $3 = 27, $4 = 11:55:52, $5 = EST, $6 = 2010.

67

Environment and Shell Variables

Standard UNIX variables are divided into 2 categories:
shell variables and environment variables.

Shell variables: apply only to the current instance of the
shell; used to set short-term working conditions.

displayed using ‘set’ command.

Environment variables: set at login and are valid for the
duration of the session.

displayed using ‘env’ command.

By convention, environment variables have UPPER
CASE and shell variables have lower case names.

68

Environment and Shell Variables (2)

In general, environment and shell variables that have
“the same” name (apart from the case) are distinct and
independent, except for possibly having the same initial
values.

Exceptions:

When home, user and term are changed, HOME, USER
and TERM receive the same values.

But changing HOME, USER or TERM does not affect home,
user Or term.

Changing PATH causes path to be changed and vice
versa.

69

Variable path

PATH and path specify directories to search for
commands and programs.

cd # current dir is home dir

funcex # this fails because funcex
1is in www/2031/Lecture9

set path=($path www/2031/Lecture9)

funcex # successful

To add a path permanently, add the line to your .cshrc
file after the list of other commands.

set path=(S$path .)

70

Readings

Sections 3.6 to 3.8, UNIX textbook
Chapter 5, UNIX textbook

Posted tutorial on standard UNIX variables
Posted Bourne shell tutorial

Most importantly, play with the scripts we
discussed in class

71

