
UNIX Shell Scripts

CSE 2031
Fall 2012

1 November 15, 2012

What Is a Shell?

•  A program that
interprets your requests
to run other programs

•  Most common Unix
shells:
–  Bourne shell (sh)
–  C shell (csh - tcsh)
–  Korn shell (ksh)
–  Bourne-again shell

(bash)
•  In this course we focus

on Bourne shell (sh).
2	

The Bourne Shell

 A high level programming language
 Processes groups of commands stored in files

called scripts
 Includes

 variables
 control structures
 processes
 signals

3	

Executable Files

 Contain one or more shell commands.
 These files can be made executable.
 # indicates a comment

 Except on line 1 when followed by an “!”

% cat welcome
#!/bin/sh
echo ‘Hello World!’

4	

Executable Files: Example
% cat welcome
#!/bin/sh
echo ‘Hello World!’
% welcome
welcome: execute permission denied
% chmod 755 welcome
% ls -l welcome
-rwxr-xr-x 1 bil faculty 30 Nov 12 10:49 welcome
% welcome
Hello World!
% welcome > greet_them
% cat greet_them
Hello World!

5

Executable Files (cont.)

 If the file is not executable, use “sh” followed
by the file name to run the script.

 Example:
% chmod 644 welcome
% ls -l welcome
-rw-r--r-- 1 bil faculty 30 Nov 12 10:49 welcome
% sh welcome
Hello World!

Processes

7

Consider the welcome program.

Processes: Explanation

  Every program is a “child” of some other program.

  Shell fires up a child shell to execute script.

  Child shell fires up a new (grand)child process for each
command.

  Shell (parent) sleeps while child executes.

  Every process (executing a program) has a unique PID.

  Parent does not sleep while running background
processes.

8

Process-Related Variables
  Variable $$ is PID of the shell.

% cat shpid
#!/bin/sh
ps
echo PID of shell is = $$

% shpid
 PID TTY TIME CMD
 5658 pts/75 00:00:00 shpid
 5659 pts/75 00:00:00 ps
11231 pts/75 00:00:00 tcsh
PID of shell is = 5658

9

Process Exit Status

  All processes return exit status (return code).
  Exit status tells us whether the last command was

successful or not.
  Stored in variable $?
  0 (zero) means command executed successfully.
  0 is good; non-zero is bad.
  Good practice: Specify your own exit status in a shell

script using exit command.
 default value is 0 (if no exit code is given).

10

Process Exit Status: Example

  A more talkative grep.
% cat igrep
#!/bin/sh
Arg 1: search pattern
Arg 2: file to search

grep $1 $2
if test $? -ne 0
then
 echo Pattern not found.
fi

% igrep echo phone
echo –n “Enter name: ”

% igrep echo2 chex
Pattern not found.

11

Redirection tricks

 Want to run a command to check its exit
status and ignore the output?
diff f1 f2 > /dev/null

 Want to combine standard error and
standard output?
diff f1 f2 > /dev/null 2>&1

12

Variables: Three Types

  Standard UNIX variables
 Consist of shell variables and environment variables.
 Used to tailor the operating environment to suit your needs.
 Examples: TERM, HOME, PATH
 To display your environment variables, type “set”.

  User variables: variables you create yourself.

  Positional parameters
 Also called read-only variables, automatic variables.
 Store the values of command-line arguments.

13

User Variables
 Syntax: name=value
 No space around the equal sign!
 All shell variables store strings (no

numeric values).
 Variable name: combinations of letters,

numbers, and underscore character (_)
that do not start with a number.

 Avoid existing commands and
environment variables.

 Shell stores and remembers these
variables and supplies value on demand.

14	

User Variables
 To use a variable: $varname
 Operator $ tells the shell to substitute the

value of the variable name.

15	

% cat ma
#!/bin/sh
dir=/usr/include/
echo $dir
echo dir
ls $dir | grep 'ma’

echo and variables

 What if I want to display the following?
$dir
 Two ways to prevent variable substitution:
echo ‘$dir’
echo \$dir
 Note:
echo “$dir” does the same as
echo $dir

 16

User Variables and Quotes
 If value contains no space, no need to

use quotes: dir=/usr/include/
 Unless you want to protect the literal $

17	

% cat quotes
#!/bin/sh
Test values with quotes
myvar1=$100
myvar2='$100'
echo The price is $myvar1
echo The price is $myvar2

User Variables and Quotes

 If value contains one or more spaces:
 Use single quotes for NO interpretation of

metacharacters (protect the literal)
 Use double quotes for interpretation of

metacharacters

18

Example
% cat quotes2
#!/bin/sh
myvar=`whoami`
squotes='Today is `date`, $myvar.'
dquotes="Today is `date`, $myvar."
echo $squotes
echo $dquotes

19

Example
% cat twodirs
#!/bin/sh
The following needs quotes
dirs="/usr/include/ /usr/local/"
echo $dirs
ls -l $dirs

20

Command Line Arguments

  Command line arguments stored in variables are called
positional parameters.

  These parameters are named $1 through $9.

  Command itself is in parameter $0.

  In diagram format:

command arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$0 $1 $2 $3 $4 $5 $6 $7 $8 $9

21

Example 1

% cat showargs
#!/bin/sh
echo First four arguments from the
echo command line are: $1 $2 $3 $4

% showargs William Mary Richard James
First four arguments from the
command line are: William Mary Richard James

22

Example 2
% cat chex
#!/bin/sh
Make a file executable
chmod u+x $1
echo $1 is now executable:
ls –l $1

% sh chex chex
chex is now executable:
-rwx------ 1 bil faculty 86 Nov 12 11:34 chex

% chex showargs
showargs is now executable:
-rwx------ 1 bil faculty 106 Nov 2 14:26 showargs

 23

Command Line Arguments

$# represents the number of command line arguments
$* represents all the command line arguments
$@ represents all the command line arguments

% cat check_args
#!/bin/sh
echo “There are $# arguments.”
echo “All the arguments are: $*”
or echo “All the arguments are: $@”

% check_args Mary Tom Amy Tony
There are 4 arguments.
All the arguments are: Mary Tom Amy Tony

24

Command Line Arguments

  $# does NOT include the program name
(unlike argc in C programs)

  $* and $@ are identical when not quoted: expand into
the arguments; blanks in arguments result in multiple
arguments.

  They are different when double-quoted:
  “$@” each argument is quoted as a separate string.
  “$*” all arguments are quoted as a single string.

25

$* versus $@ Example

% cat displayargs
#!/bin/sh
echo All the arguments are "$@".
countargs "$@"
echo All the arguments are "$*".
countargs "$*"

% cat countargs
#!/bin/sh
echo Number of arguments to countargs = $#

% displayargs Mary Amy Tony

26

Control Structures

  if then else
 for
 while
 case (which)
 until

27

if Statement and test Command

  Syntax:
if condition
then
 command(s)
elif condition_2
then
 command(s)
else
 command(s)
fi

  Command test is often used in condition.

28

if – then – else Example

% cat if_else
#!/bin/sh
echo -n 'Enter string 1: '
read string1
echo -n 'Enter string 2: '
read string2
if test $string1 = $string2
then
 echo 'They match!'
else
 echo 'No match!'
fi

% if_else
Enter string 1: acd
Enter string 2: 123
No match!

% if_else
Enter string 1: 123
Enter string 2: 123
They match!

29	

test Command

-e arg True if arg exists
-d arg True if arg is a directory
-f arg True if arg is an ordinary file
-r arg True if arg is readable
-w arg True if arg is writable
-x arg True if arg is executable
-s arg True if size of arg is greater than 0
! –d arg True if arg is not a directory

30

test Command (Numeric tests)

n1 –eq n2 n1 == n2
n1 –ge n2 n1 >= n2
n1 –gt n2 n1 > n2
n1 –le n2 n1 <= n2
n1 –ne n2 n1 != n2
n1 –lt n2 n1 < n2

Parentheses can be used to group conditions.
31

test Example 1

% cat check_file
if test ! -e $1
then
 echo "$1 does not exist."
 exit 1
else
 ls -l $1
fi

32

test Example 2

% cat check_file2
#!/bin/sh
if test $# -eq 0
then
 echo Usage: check_file file_name
 exit 1
fi
…

33

test Example 3

  What is wrong with the following script?

% cat chkex2
#!/bin/sh
Check if a file is executable.
if test -x $1
then
 echo File $1 is executable.
else
 echo File $1 is not executable.
fi

34

test and Logical Operators
  !, || and && as in C
  Following is better version of test Example 3
%cat chkex
#!/bin/sh
if test -e $1 && test -x $1
then
 echo File $1 is executable.
elif test ! -e $1
then
 echo File $1 does not exist.
else
 echo File $1 is not executable.
fi

35

for Loops

for variable in list
do
 command(s)
done

 variable is a user-defined variable.
 list is a sequence of strings separated by
spaces.

36

for Loop Example 1

% cat fingr
#!/bin/sh
for name in $*
do
 finger $name
done

 Recall that $* stands for all command line
arguments the user enters.

37

for Loop Example 2

% cat fsize
#!/bin/sh
for i in $*
do
 echo "File $i: `wc -c $i | cut -f1 -d" " ̀
bytes”
done

38

for Loop Example 3

% cat makeallex
Make all files in the working directory
executable.
for i in *
do
 chmod a+x $i
 ls -l $i
done

for Loop Example 4

% cat prdir
#!/bin/sh
Display all c files in a directory
specified by argument 1.

for i in $1/*.c
do
 echo "======= $i ======"
 more $i
done

40

Arithmetic Operations Using expr
  The shell is not intended for numerical work (use Java, C, or Perl

instead).
  However, expr utility may be used for simple arithmetic operations

on integers.
  expr is not a shell command but rather a UNIX utility.
  To use expr in a shell script, enclose the expression with

backquotes.
  Example:

#!/bin/sh
sum=`expr $1 + $2`
echo $sum

  Note: spaces are required around the operator + (but not allowed
around the equal sign).

41

expr Example
% cat cntx
#!/bin/sh
Count the number of executable files in …
the current working directory
count=0
for i in *
do
 if test -x $i
 then

 count=`expr $count + 1`
 ls -l $i

 fi
done
echo “There are $count executable files.”

42

while Loops

while condition
do
 command(s)
done

 Command test is often used in condition.
 Execute command(s)when condition is met.

43

while Loop Example

#!/bin/sh
Display the command line arguments, one per line.
count=1
argc=$#
while test $count -le $argc
do
 echo "Argument $count is: $1"
 count=`expr $count + 1`
 shift # shift arg 2 into arg 1 position
done

What happens if the while statement is as follows?
while test $count -le $#

44

until Loops

until condition
do
 command(s)
done

 Command test is often used in condition.
 Exit loop when condition is met.

45

until Loop Example

% cat grocery
#!/bin/sh
Enter a grocery list and …
store in a file indicated by $1

echo To end list, enter \"all\".
item=nothing
until test $item = “all”
do
 echo -n "Enter grocery item: "
 read item
 echo $item >> $1
done

46

until Loop Example Output

% grocery glist
To end list, enter "all".
Enter grocery item: milk
Enter grocery item: eggs
Enter grocery item: lettuce
Enter grocery item: all

% cat glist
milk
eggs
lettuce
all

47

break and continue

  Interrupt loops (for, while, until)

  break transfers control immediately to the statement
after the nearest done statement
 terminates execution of the current loop

  continue transfers control immediately to the nearest
done statement
 brings execution back to the top of the loop

  Same effects as in C.

48	

break and continue Example

#!/bin/sh
while true
do
echo “Entering ‘while’ loop ...”
echo “Choose 1 to exit loop.”
echo “Choose 2 to go to top of loop.”
echo -n “Enter choice: ”
read choice
if test $choice = 1
then
 break
fi

echo “Bypassing ‘break’.”

if test $choice = 2
then
 continue
fi

echo “Bypassing ‘continue’.”
done

echo “Exit ‘while’ loop.”

49

Shell Functions

  Similar to shell scripts.
  Stored in shell where it is defined (instead of in a file).
  Executed within sh

 no child process spawned
  Syntax:

function_name()
{
 commands
}

  Allows structured shell scripts

50

Example
#!/bin/sh
Function to log users
log()
{
 echo -n "Users logged on: " >> $1
 date >> $1
 who >> $1
}
Beginning of main script
log log1
log log2

51

Shell Functions (2)

  Make sure a function
does not call itself
causing an endless loop.

% cat makeit
#!/bin/sh
…
sort()
{
 sort $* | more

}
…

  Should be written:

% cat makeit
#!/bin/sh
…
sort()
{
 /bin/sort $* | more

}
…

52

Reading User Input

  Reads from standard input.

  Stores what is read in user variable.

  Waits for the user to enter something followed by
<RETURN>.

  Syntax:
read varname # no dollar sign $

  To use the input:
 echo $varname

53

Example 1

% cat greeting
#!/bin/sh
echo –n “Enter your name: ”
read name
echo “Hello, $name. How are you today?”

% greeting
Enter your name: Jane
Hello, Jane. How are you today?

54

Example 2
% cat doit
#!/bin/sh
echo –n ‘Enter a command: ’
read command
$command
echo “I’m done. Thanks”

% doit
Enter a command: ls lab*
lab1.c lab2.c lab3.c lab4.c lab5.c lab6.c
I’m done. Thanks

% doit
Enter a command: who
lan pts/200 Sep 1 16:23 (indigo.cs.yorku.ca)
jeff pts/201 Sep 1 09:31 (navy.cs.yorku.ca)
anton pts/202 Sep 1 10:01 (red.cs.yorku.ca)
I’m done. Thanks

 55

Reading User Input (2)

 More than one variable may be specified.

 Each word will be stored in separate variable.

 If not enough variables for words, the last
variable stores the rest of the line.

56

Example 3

% cat read3
#!/bin/sh
echo “Enter some strings: ”
read string1 string2 string3
echo “string1 is: $string1”
echo “string2 is: $string2”
echo “string3 is: $string3”

% read3
Enter some strings:
This is a line of words
string1 is: This
string2 is: is
string3 is: a line of words

 57

case Statement

case variable in
pattern1) command(s);;
pattern2) command(s);;
. . .
patternN) command(s);;
*) command(s);; # all other cases
esac

 Why the double semicolons?

58

case Statement Example
#!/bin/sh
Course schedule
echo -n "Enter the day (mon, tue, wed, thu, fri): "
read day
case $day in
 mon) echo 'CSE2031 2:30-4:30 CLH-H'

 echo 'CSE2021 17:30-19:00 TEL-0016';;
 tue | thu)

 echo 'CSE2011 17:30-19:00 SLH-E';;
 wed) echo 'No class today. Hooray!';;
 fri) echo 'CSE2031 2:30-4:30 LAB 1006';;
 *) echo 'Day off. Hooray!';;
esac

59

Shifting arguments

 What if the number of arguments is more than
9? How to access the 10th, 11th, etc.?

 Use shift operator.

60

shift Operator

 shift promotes each argument one
position to the left.

 Allows access to arguments beyond $9.
 Operates as a conveyor belt.

Shifts contents of $2 into $1
Shifts contents of $3 into $2
Shifts contents of $4 into $3 etc.

 Eliminates argument that used to be in $1
 After a shift, the argument count stored in
$# is automatically decreased by one.

61	

Example 1

% cat shiftex
#!/bin/sh
echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"
myvar=$1 # save the first argument
shift
echo "arg1 = $1, arg8 = $8, arg9 = $9, ARGC = $#"
echo "myvar = $myvar”

% shiftex 1 2 3 4 5 6 7 8 9 10 11 12
arg1 = 1, arg8 = 8, arg9 = 9, ARGC = 11
arg1 = 2, arg8 = 9, arg9 = 10, ARGC = 10
myvar = 1

 62

Example 2

% cat show_shift
#!/bin/sh
echo “arg1=$1, arg2=$2, arg3=$3”
shift
echo “arg1=$1, arg2=$2, arg3=$3”
shift
echo “arg1=$1, arg2=$2, arg3=$3”

% show_shift William Richard Elizabeth
arg1=William, arg2=Richard, arg3=Elizabeth
arg1=Richard, arg2=Elizabeth, arg3=
arg1=Elizabeth, arg2= , arg3=

63

Example 3

% my_copy dir_name filename1 filename2 filename3 …

This shell script copies all the files to

directory “dir_name”

% cat my_copy
#!/bin/sh
Script allows user to specify, as the 1st argument,
the directory where the files are to be copied.
location=$1
shift
files=$*
cp $files $location

64

Shifting Multiple Times

Shifting arguments three positions: 3 ways to write it

shift
shift
shift

shift; shift; shift

shift 3

65

Changing Values of Positional
Parameters
 Positional parameters $1, $2, … normally

store command line arguments.

 Their values can be changed using the set
command

 set newarg1 newarg2 …

66

Example

% cat setparm
#!/bin/sh
echo "Hello, $1. You entered $# command line argument(s). Today's date is ..."
date
set `date`
echo There are now $# positional parameters. The new parameters are ...
echo \$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6.

% setparm Amy Tony
Hello, Amy. You entered 2 command line argument(s). Today's date is ...
Sat Nov 27 11:55:52 EST 2010
There are now 6 positional parameters. The new parameters are ...
$1 = Sat, $2 = Nov, $3 = 27, $4 = 11:55:52, $5 = EST, $6 = 2010.

 67

Environment and Shell Variables

  Standard UNIX variables are divided into 2 categories:
shell variables and environment variables.

  Shell variables: apply only to the current instance of the
shell; used to set short-term working conditions.
 displayed using ‘set’ command.

  Environment variables: set at login and are valid for the
duration of the session.
 displayed using ‘env’ command.

  By convention, environment variables have UPPER
CASE and shell variables have lower case names.

68

Environment and Shell Variables (2)

  In general, environment and shell variables that have
“the same” name (apart from the case) are distinct and
independent, except for possibly having the same initial
values.

  Exceptions:
  When home, user and term are changed, HOME, USER

and TERM receive the same values.
  But changing HOME, USER or TERM does not affect home,
user or term.

  Changing PATH causes path to be changed and vice
versa.

69

Variable path

  PATH and path specify directories to search for
commands and programs.

cd # current dir is home dir
funcex # this fails because funcex
 # is in www/2031/Lecture9
set path=($path www/2031/Lecture9)
funcex # successful
  To add a path permanently, add the line to your .cshrc

file after the list of other commands.
set path=($path .)

70

Readings

  Sections 3.6 to 3.8, UNIX textbook
  Chapter 5, UNIX textbook

  Posted tutorial on standard UNIX variables
  Posted Bourne shell tutorial

  Most importantly, play with the scripts we
discussed in class

71

