
1

Introduction to UNIX

CSE 2031
Fall 2012

November	
 5,	
 2012	

Introduction

 UNIX is an operating system (OS).
 Our goals:

 Learn how to use UNIX OS.
 Use UNIX tools for developing programs/

software, specifically shell programming.

2	

Processes

 Each running program on a UNIX system is
called a process.

 Processes are identified by a number (process id
or PID).

 Each process has a unique PID.
 There are usually several processes running

concurrently in a UNIX system.

3	

ps command

 % ps a # list all processes
 PID TTY TIME CMD
 2117 pts/24 00:00:00 pine
 2597 pts/79 00:00:00 ssh
 5134 pts/67 00:00:34 alpine
 7921 pts/62 00:00:01 emacs
13963 pts/24 00:00:00 sleep
13977 pts/93 00:00:00 ps
15190 pts/90 00:00:00 vim
18819 pts/24 00:00:07 stayAlive
24160 pts/44 00:00:01 xterm
. . .

4

The File System

 Directory structure
 Current working directory
 Path names
 Special notations

5	

Directory Structure

6	

2

Current Working Directory

 Every process has a current working directory.
 In a shell, the command ls shows the contents

of the current working directory.
 pwd shows the current working directory.
 cd changes the current working directory to

another.

7	

Path Names

•  A path name is a reference to something in the file
system.

•  A path name specifies the set of directories you have to
pass through to find a file.

•  Directory names are separated by '/' in UNIX.
•  Path names beginning with '/' are absolute path names.
•  Path names that do not begin with '/' are relative path

names (start search in current working directory).

8	

Special Characters

 . means the current directory
 .. means the parent directory

 cd ..
 cd ../Notes

 ~ means the home directory
 cat ~/lab3.c

 To go directly to your home directory, type
 cd

9	

Frequently Used Terminal Keystrokes

 Interrupt the current process: Ctrl-C
 End of file: Ctrl-D
 Read input (stdin) from a file

o a.out < input_file

 Redirect output (stdout) to a file
o  ls > all_files.txt # overwrites all_files.txt

 Append stdout to a file
o  ls >> all_files.txt # append new text to file

Wildcards (File Name Substitution)

  Goal: referring to several files in one go.
  ? match single character

  ls ~/C2031/lab5.???
  lab5.doc lab5.pdf lab5.out

  * match any number of characters
  ls ~/C2031/lab5.*

  […] match any character in the list enclosed by []
  ls ~/C2031/lab[567].c
  lab5.c lab6.c lab7.c

  We can combine different wildcards.
  ls [ef]*.c
 enum.c ex1.c fn2.c

11

Unix Commands

There are many of them

We will see some of the most useful ones

We know already:

ls, cp, mv, rm, pwd, mkdir, rmdir, man

12	

3

cat, more, tail

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% more phone_book
Similar to cat, except that the file
is displayed one screen at a time.

% tail myfile.txt
Display the last 10 lines

% tail -5 myfile.txt
Display the last 5 lines

% tail -1 myfile.txt
Display the last line

% tail +3 myfile.txt
Display the file starting from the
3rd line.

13

echo

  When one or more strings are provided as arguments,
echo by default repeats those strings on the screen.

% echo This is a test.
This is a test.
  It is not necessary to surround the strings with quotes, as

it does not affect what is written on the screen.
  If quotes (either single or double) are used, they are not

repeated on the screen.
% echo ‘This is’”a test.”
This is a test.
  To display single/double quotes, use \’ or \”
 14

echo (cont.)

% echo a \t b
a t b
% echo 'a \t b'
a b
% echo "a \t b"
a b

15

wc

% wc enum.c
 14 37 220 enum.c

% wc [e]*.c
 14 37 220 enum.c
 17 28 233 ex1.c
 21 46 300 ex2.c
 52 111 753 total

% wc -c enum.c
220 enum.c

% wc -w enum.c
37 enum.c

% wc -l enum.c
14 enum.c

16

sort

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% sort phone_book
Amy 416-123-4567
Annie 905-555-9876
John 647-999-4321
William 905-888-1234
Yvonne 416-987-6543

Try these options:
sort –r

 reverse normal order
sort –n

 numeric order
sort –nr

 reverse numeric order
sort –f

 case insensitive

17

cmp, diff

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% cat phone_book2
Yvonne 416-987-6543
Amy 416-111-1111
William 905-888-1234
John 647-999-9999
Annie 905-555-9876

% cmp phone_book phone_book2
phone_book phone_book2
differ: char 9, line 2

% diff phone_book
phone_book2
2c2
< Amy 416-123-4567

> Amy 416-111-1111
4c4
< John 647-999-4321

> John 647-999-9999

 18

4

who
% who
ossama pts/13 Nov 7 00:22 (ip-198-96-36-11.dynamic.yorku.ca)
hoda pts/21 Nov 4 16:49 (gomez.cs.yorku.ca)

gordon pts/24 Nov 5 10:40 (bas2-toronto08-1096793138.dsl.bell.ca)
minas pts/29 Nov 2 14:09 (monster.cs.yorku.ca)
jas pts/37 Oct 18 12:36 (brayden.cs.yorku.ca)
utn pts/93 Nov 7 12:21 (bas2-toronto44-1177753778.dsl.bell.ca)

 User name
 Terminal associated with the process
 Time when they logged in

19

kill

% ps a
 PID TTY TIME CMD
 2117 pts/24 00:00:00 pine
 2597 pts/79 00:00:00 ssh
 5134 pts/67 00:00:34 alpine
 7921 pts/62 00:00:01 emacs
13963 pts/24 00:00:00 sleep
13976 pts/43 00:00:00 sleep
13977 pts/93 00:00:00 ps
15190 pts/90 00:00:00 vim
24160 pts/44 00:00:01 xterm
. . .

% kill -9 7921

 9 is the KILL signal

20

history

% history 10
 323 12:45 ls
 324 12:47 cd Demo_2031/
 325 12:48 ls
 326 12:48 m ex1.c
 327 12:49 who
 328 12:50 history 10
 329 12:52 ls -a
 330 12:56 ls Stack/
 331 12:57 ls
 332 12:57 history 10

21

Pipes

  Pipe: a way to connect the output of one program to the
input of another program without any temporary file.

  Pipeline: connection of two or more programs through
pipes.

  Examples:
ls –l | wc –l # count number of files
who | sort # sort user list
who | wc –l # count number of users

22

23

field
delimiter

cut

 Used to split lines of a file
 A line is split into fields
 Fields are separated by delimiters
 A common case where a delimiter is a

space:
 hello there world

24

cut

 Syntax
 cut [-ffields] [-ccolumns]

 [-dcharacter] [filename …]
 If filenames are given on command line,

input is taken from those files
 If no filenames are given, input comes

from stdin
 This approach to input is very common

5

25

cut

 Two main forms - extracting fields
  cut -f3 -d,

 extract field 3 from each line
 fields are separated by ',’

 e.g. with an input of
  hello,there,world,!
 output would be just "world"

26

cut

 The other way - pulling out characters:
  cut -c30-40

 extract characters 30 through 40 (inclusive)
from each line

 Note that we can use ranges (e.g. 4-10) or
lists (e.g. 4,6,7) as values for -f or -c.

27

uniq

 Removes repeated lines in a file
  uniq [-c] [input [output]]

 Notice difference in args:
 1st filename is input file
 2nd filename is output file

 If input is not specified, use stdin
 If output is not specified, use stdout

28

uniq

 Only works for lines that are adjacent, e.g.
 abacus
 abacus
 bottle
 abacus
  becomes
 abacus
 bottle
 abacus

29

uniq

 With the -c option output is a count of
how many times each line was repeated

 For previous input:
  2 abacus
  1 bottle
  1 abacus

30

sort + uniq

 uniq is a little limited but we can combine it
with sort

  sort | uniq -c
  counts number of times line appears in

file
 output would now be:
  3 abacus
  1 bottle

6

31

abacus

abacus

bottle

abacus

abacus

abacus

abacus

bottle

3 abacus

1 bottle sort uniq

sort + uniq

 To understand:

32

tr

 "translates" characters
 Maps characters from one value to

another
  tr string1 string2
  tr [-d] [-c] string
 Input is always stdin, output is always

stdout
 A character in string1 is changed to the

corresponding character in string2

33

tr

 A simple example:
  tr x y
  All instances of 'x' are replaced with 'y'
 Each string can be a set of characters
  tr ab xy
  'a' is replaced with 'x', 'b' is replaced

with 'y'

34

tr

 The -d option means delete the given
characters

  tr -d xyz
  Delete all 'x', 'y', and 'z' characters
 The -c option means "complement" (i.e.

the inverse)
  tr -d -c xyz
 Delete all characters except 'x', 'y', and 'z'

35

Why Are These So Weird?

 Unix philosophy:
 Do one thing and do it well

 So 'tr' doesn't know how to read from files,
the "cat" command does know how:

  cat filename | tr …

36

Regular Expressions

 A regular expression is a special string
(like a wildcard pattern)

 A compact way of matching several lines
with a single string

7

37

Regular Expressions

 The basics:
  letters and numbers are literal - that is

they match themselves:
 e.g. "foobar" matches "foobar"
  '.' matches any character (just one)
 e.g. "fooba." matches "foobar",
"foobat", etc.

38

Regular Expressions

 Each '.' character must match exactly
one character

 e.g. "f..bar" matches "foobar" but
not "fubar"

 [xxx] matches any character in the set
 e.g. "foob[aeiou]r" matches
"foobar", "foober", "foobir", etc.

39

Regular Expressions

 '*' means "0 or more of the last
character"

 "fo*" matches "f", "fo", "foo",
"fooo", "foooo", etc.

 "[0-9][0-9]*" matches a decimal
number

 ".*" matches anything (including an
empty string)

 '?' means "0 or 1 of the last character" 40

Regular Expressions

 "^" matches the beginning of the line,
"$" matches the end of the line

 "^foobar" - matches any line that starts
with "foobar"

 "foobar$" - matches any line that ends
with "foobar"

41

grep

 Prints out all lines in the input that match
the given regular expression

  grep [options] pattern
[file …]

 e.g.
  grep hello
  Prints out all lines containing "hello"

42

grep

 A warning: does the following work?
  grep ^[a-z]*
 If you type it in, it won't work
 Why not?

8

43

grep

 Options control searches:
 -i - case-insensitive search (don't

distinguish between 'a' and 'A')
 -v - invert search (print out lines which

don't match)
 -l - when used with filenames, print out

names of files with matching lines

44

grep

 Some interesting uses:
  grep -v '^#'
  Removes all lines beginning with

'#'
  grep -v '^[]*$'
  Removes all lines which are either

 empty or contain only spaces

45

fgrep

 Like grep, fgrep searches for things but
does not do regular expressions - just
fixed strings

 fgrep == faster grep
  fgrep 'hello.*goodbye'
  Searches for string “hello.*goodbye” -

does not match it as a regular expression

46

Working With Files

 Wildcards are limited
 The following commands helps us to find

files and run commands on them

47

find

 Finds files with the given properties
  find path … [-operation …]
 Not just regular files - includes directories,

devices - everything it finds in the
filesystem

 Starts at the given path and walks down
through every directory it finds

48

find

 We can specify operators to control
 which files we find
 what to do with them when we find them

 All operators begin with "-", e.g.
  find $HOME -print
  Prints out the name of every file in your

home directory

9

49

find

 Operators are handled left-to-right
 Each operator is "true" or "false"
 Stop processing operators for a file if an

operator is false
 e.g. "-print" means print out the file

name and is always "true"

50

find

 Another operator: -type filetype
 Tests to see what kind of file it is
 e.g. f = regular file, d = directory
  find $HOME -type d -print
   Prints all directories under your home
directory.

51

find

 -name pattern = true if the name of the
file matches the wildcard pattern 'pattern’

 find $HOME -type f -name '*.c’
Finds all files under your home directory
which are regular files and end in “.c”
 So what can you do with this?

 look at '-exec' operator for find!

52

xargs

 Another way to use find is to combine it
with xargs

 xargs command
 xargs executes given command for each word

in its stdin
find $HOME -type f -name '*.c’
-print | xargs wc -l

  Counts number of words in all C files

NEVER-DO List in UNIX

  Never switch off the power on a UNIX computer.
 You could interrupt the system while it is writing to the disk drive and

destroy your disk.
 Other users might be using the system.

  Avoid using * with rm such as rm *, rm *.c
  Do not name an important program core.

 When a program crashes, UNIX dumps the entire kernel image to a
file called core.

 Many scripts go around deleting these core files.

  Do not name an executable file test.
 There is a Unix command called test.

53

Command Terminators

  Command terminator: new line or ;
% date; who

  Another command terminator: &
% nedit lab9.c&

 Tells the shell not to wait for the command to complete.
 Used for a long-running command “in the background” while you

continue to use the xterm for other commands.

54

10

Command Terminators (cont.)

  Use parentheses to group commands
% (sleep 5; date) & date
14929 # process ID of long-running command

Tue Nov 9 14:06:15 EST 2010 # output of 2nd date

% Tue Nov 9 14:06:20 EST 2010 # output of 1st date

  The precedence of | is higher than that of ;
% date; who | wc -l
% (date; who) | wc -l

55

tee command

  tee copies its input to a file as well as to standard output
(or to a pipe).

% date | tee date.out
Tue Nov 9 13:51:22 EST 2010
% cat date.out
Tue Nov 9 13:51:22 EST 2010
% date | tee date.out | wc
 1 6 29
% cat date.out
Tue Nov 9 13:52:49 EST 2010

 56

Comments

  If a shell word begins with #, the rest of the line is
ignored.

  Similar to // in Java.

% echo Hello #world
Hello
% echo Hello#world
Hello#world

57

Metacharacters

  Most commonly used: *
  Search the current directory for file names in which any

strings occurs in the position of *
% echo * # same effect as
% ls *

  To protect metacharacters from being interpreted:
enclose them in single quotes.

% echo ‘***’

58

Metacharacters (cont.)

  Or to put a backslash \ in front of each character:
% echo ***

  Double quotes can also be used to protect
metacharacters, but …

  The shell will interpret $, \ and `…` inside the double
quotes.

  So don’t use double quotes unless you intend some
processing of the quoted string (see slide 10).

59

Quotes

  Quotes do not have to surround the whole argument.
% echo x’*’y # same as echo ‘x*y’
x*y

  What’s the difference between these two commands?
% ls x*y
% ls ‘x*y’

60

11

Program Output as Arguments

  To use the output of a command X as the argument of
another command Y, enclose X in back quotes: `X`

% echo `date`
Tue Nov 9 13:11:03 EST 2010
% date # same effect as above
Tue Nov 9 13:11:15 EST 2010
% echo date
date
% wc `ls *`
% wc * # same as above

61

Program Output as Arguments (2)

  Single quotes vs. double quotes:

% echo The time now is `date`
The time now is Tue Nov 9 13:11:03 EST 2010

% echo "The time now is `date`"
The time now is Tue Nov 9 13:11:15 EST 2010

% echo 'The time now is `date`'
The time now is `date`

62

Program Output as Arguments (3)

% pwd
/cs/home

% ls –1 | wc –l
26

% echo You have `ls –1 | wc –l` files in the `pwd` directory
You have 26 files in the /cs/home directory

63

File/Directory Permissions

64

chmod Command

chmod who+permissions filename # or dirname
chmod who-permissions filename # or dirname

Examples:
chmod u+x my_script # make file executable
chmod a+r index.html # for web pages
chmod a+rx Notes # for web pages
chmod a-rx Notes
chmod a-r index.html

65

chmod with Binary Numbers

chmod u+x my_script
chmod a+r index.html

chmod a+rx Notes
chmod a-rx Notes

chmod a-r index.html

chmod 700 my_script
chmod 644 index.html

chmod 755 Notes
chmod 700 Notes
chmod 750 Notes
chmod 600 index.html
chmod 640 index.html

66

12

chgrp Command

chgrp grp_name filename # or dirname

 Examples:
chgrp submit asg1
chgrp labtest lab9

 To display the group(s) a user belongs to, use id
command:
% id cse12345
uid=12695(cse12345) gid=10000(ugrad) groups=10000(ugrad)

67

Next time …

  Writing Shell Scripts

  Reading: Chapters 1, 2, 3.1 – 3.5
“Practical Programming in the UNIX Environment”

 chmod tutorial:
http://catcode.com/teachmod/

68

