Introduction to UNIX

CSE 2031
Fall 2012

Introduction

UNIX is an operating system (OS).

Our goals:
Learn how to use UNIX OS.

Use UNIX tools for developing programs/
software, specifically shell programming.

Processes

Each running program on a UNIX system is
called a process.

Processes are identified by a number (process id
or PID).

Each process has a unique PID.

There are usually several processes running
concurrently in a UNIX system.

psS command

5 pPs a # list all processes
PID TTY TIME CMD
2117 pts/24 00:00:00 pine
2597 pts/79 00:00:00 ssh
5134 pts/67 00:00:34 alpine
7921 pts/62 00:00:01 emacs
13963 pts/24 00:00:00 sleep
13977 pts/93 00:00:00 ps
15190 pts/90 00:00:00 vim
18819 pts/24 00:00:07 stayAlive
24160 pts/44 00:00:01 xterm

The File System

Directory structure
Current working directory
Path names

Special notations

Directory Structure

I (root)

) T

usr dev

etc bin

bin conf ce Is awk home console kbd TAPE

perl | php httpd.conf jack jill
/\ S
httpd

bin tmp bin tmp
/

a.out a.out

Current Working Directory

Every process has a current working directory.

In a shell, the command Is shows the contents
of the current working directory.

pwd shows the current working directory.

cd changes the current working directory to
another.

Path Names

A path name is a reference to something in the file
system.

A path name specifies the set of directories you have to
pass through to find a file.

Directory names are separated by '/' in UNIX.
Path names beginning with '/' are absolute path names.

Path names that do not begin with '/ are relative path
names (start search in current working directory).

Special Characters

. means the current directory

.. means the parent directory
cd ..
cd ../Notes

~ means the home directory
cat ~/lab3.c

To go directly to your home directory, type
cd

Frequently Used Terminal Keystrokes

Interrupt the current process: Ctrl-C
End of file: Ctrl-D
Read input (stdin) from a file

a.out < input_file

Redirect output (stdout) to a file
Is > all _files.txt # overwrites all_files.txt

Append stdout to a file

Is >> all files.txt # append new text to file

Wildcards (File Name Substitution)

Goal: referring to several files in one go.

? match single character

Is ~/C2031/1ab5.?7?7?
lab5.doc lab5.pdf lab5.out

* match any number of characters
s ~/C2031/lab5.*

[...] match any character in the list enclosed by []
ls ~/C2031/lab[567].c
lab5.c lab6.c lab7.c

We can combine different wildcards.
Is [ef]*.Cc
enum.c ex1.c fn2.c

11

Unix Commands

There are many of them

We will see some of the most useful ones

We know already:

Is, cp, mv, rm, pwd, mkdir, rmdir, man

cat, more, tall

% cat phone book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% more phone book
Similar to cat, except that the file

is displayed one screen at a time.

% tail myfile. txt
Display the last 10 lines

$ tail -5 myfile.txt
Display the last 5 lines

% tail -1 myfile.txt
Display the last line
% tail +3 myfile. txt

Display the file starting from the
31 line.

13

echo

When one or more strings are provided as arguments,
echo by default repeats those strings on the screen.

% echo This 1s a test.
This is a test.

It is not necessary to surround the strings with quotes, as
it does not affect what is written on the screen.

If quotes (either single or double) are used, they are not
repeated on the screen.

% echo 'This is’”a test.”
This 1s a test.
To display single/double quotes, use \’ or \”

14

echo (cont.)

o°

echo a \t b

tb

echo 'a \t b'
b

echo "a \t b"
b

()

o®

(\]

o°

()

15

WC

$ wC enum.cC
14 37 220

$ we [e]l*.c

14 37 220
17 28 233
21 46 300

52 111 753

enum. C

enum.cC
exl.c
ex2.c
total

% wC -C enum.cC
220 enum.c

% WC -w enum.cC

37 enum.c

$ we -1 enum.c

14 enum.c

16

sort

% cat phone book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% sort phone book
Amy 416-123-4567
Annie 905-555-9876
John 647-999-4321
William 905-888-1234
Yvonne 416-987-6543

Try these options:
sort -r

reverse normal order
sort —n

numeric order
sort —-nr

reverse numeric order
sort —-f

case insensitive

17

cmp, diff

% cat phone book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% cat phone book2
Yvonne 416-987-6543
Amy 416-111-1111
William 905-888-1234
John 647-999-9999
Annie 905-555-9876

% cmp phone book phone book2

phone book phone book2
differ: char 9, line 2

% diff phone book
phone book2

2c2

< Amy 416-123-4567
> Amy 416-111-1111
4c4

< John 647-999-4321

> John 647-999-9999

18

who

% who

ossama pts/13 Nov 7 00:22 (ip-198-96-36-11.dynamic.yorku.ca)

hoda pts/21 Nov 4 16:49 (gomez.cs.yorku.ca)

gordon pts/24 Nov 5 10:40 (bas2-toronto08-1096793138.dsl.bell.ca)

minas pts/29 Nov 2 14:09 (monster.cs.yorku.ca)

jas pts/37 Oct 18 12:36 (brayden.cs.yorku.ca)

utn pts/93 Nov 7 12:21 (bas2-toronto44-1177753778.dsl.bell.ca)
User name

Terminal associated with the process
Time when they logged in

19

Kill

5 ps a
PID
2117
2597
5134
7921
13963
13976
13977
15190
24160

TTY

pts/24
pts/79
pts/67
pts/62
pts/24
pts/43
pts/93
pts/90
pts/44

00:
00:
00:
00:
00:
00:
00:
00:
00:

TIME

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
34
01
00
00
00
00
01

CMD
pine
ssh
alpine
emacs
sleep
sleep
ps
vim

Xterm

kill -9 7921

9 is the KILL signal

20

history

% history 10
323 12:45 1s
324 12:47 cd Demo 2031/
325 12:48 1s
326 12:48 m exl.c
327 12:49 who
328 12:50 history 10
329 12:52 1s -a
330 12:56 ls Stack/
331 12:57 1s
332 12:57 history 10

Pipes

Pipe: a way to connect the output of one program to the
input of another program without any temporary file.

Pipeline: connection of two or more programs through
pipes.

Examples:
ls -1 | we -1 # count number of files
who | sort # sort user list

who | wec -1 # count number of users

22

cut

Used to split lines of a file
A line is split into fields
Fields are separated by delimiters

A common case where a delimiter Is a

space:
hello there world
L] I | _
' field

delimiter

23

cut

Syntax

cut [-ffields] [-ccolumns]
[-dcharacter] [filename

If flenames are given on command line,
input Is taken from those files

If no filenames are given, input comes
from stdin

This approach to input is very common

24

o]

cut

wo main forms - extracting fields
cut -£f3 -d,
extract field 3 from each line
fields are separated by ',’

e.g. with an input of
hello, there,world,!
output would be just "world"

25

cut

he other way - pulling out characters:

cut -c¢30-40

extract characters 30 through 40 (inclusive)
from each line

Note that we can use ranges (e.g. 4-10) or
lists (e.qg. 4,6,7) as values for -f or -c.

26

uniq

Removes repeated lines in a file
uniq [-c] [input [output]]

Notice difference in args:
1st filename is input file
2nd filename is output file

If input is not specified, use stdin
If output is not specified, use stdout

27

uniq

Only works for lines that are adjacent, e.qg.
abacus
abacus
bottle
abacus
becomes
abacus
bottle

abacus

uniq

With the -c option output is a count of
how many times each line was repeated

For previous input:

2 abacus
1 bottle

1 abacus

29

sort + uniq

uniq is a little limited but we can combine it
with sort

sort | uniq -c
counts number of times line appears in
file
output would now be:
3 abacus
1 bottle

30

sort + uniqg

abacus
abacus

bottle

abacus

sort

o0 understand:

31

abacus
abacus
abacus

bottle

uniqg

3 abacus

1 bottle

tr

"translates” characters
Maps characters from one value to
another
tr stringl stringZ
tr [-d] [-c¢] string
Input is always stdin, output is always

stdout

A character in string1 is changed to the
» corresponding character in string2

tr

A simple example:
tr x vy
All instances of 'x' are replaced with 'y’
Each string can be a set of characters
tr ab xy
'a' Is replaced with X', 'b' is replaced
with 'y’

33

tr

34

he -d option means delete the given
characters

tr -d xyz
Delete all X', 'y', and 'z' characters

The -c option means "complement” (i.e.
the inverse)

tr -d -c xyz
Delete all characters except X', 'y', and 'z’

Why Are These So Weird?

Unix philosophy:
Do one thing and do it well

So 'tr' doesn't know how to read from files,
the "cat" command does know how:

cat filename | tr ..

35

Regular Expressions

A regular expression is a special string
(like a wildcard pattern)

A compact way of matching several lines
with a single string

36

Regular Expressions

he basics:

letters and numbers are literal - that is
they match themselves:

e.g. "foobar" matches "foobar"
' . ' matches any character (just one)

e.g. "fooba." matches "foobar",
"foobat", efc.

37

Regular Expressions

Each '.' character must match exactly
one character

e.g. "f. .bar" matches "foobar" but
not " fubar"

[xxx] matches any character in the set

e.g. "foob[aeiou] r" matches
"foobar", "foober", "foobir", etc.

38

Regular Expressions

'*' means "0 or more of the last
character”

"Fox" matCheS nfn, "fO", "fOO",
"fooo", "foooo", efc.

"[0-9][0-9]*" matches a decimal
number

" . *" matches anything (including an
empty string)

'?2' means "0 or 1 of the last character"

39

Regular Expressions

"~" matches the beginning of the line,
"$" matches the end of the line

"~foobar" - matches any line that starts
with "foobar”

"foobar$" - matches any line that ends
with "foobar"

40

grep

Prints out all lines in the input that match
the given regular expression

grep [options] pattern
[file ..]

e.g.
grep hello
Prints out all lines containing "hello"

41

grep

A warning: does the following work"?
grep “[a-z]*

If you type it in, it won't work

Why not?

42

grep

Options control searches:

-i - case-insensitive search (don't
distinguish between 'a' and 'A’)

-v - invert search (print out lines which
don't match)

-1 - when used with filenames, print out
names of files with matching lines

43

grep

Some interesting uses:
grep -v '*#'
Removes all lines beginning with
4
grep -v '~[]*§'
Removes all lines which are either
empty or contain only spaces

44

fgrep

Like grep, fgrep searches for things but
does not do regular expressions - just

fixed strings
fgrep == faster grep
fgrep 'hello.*goodbye'

Searches for string “hello.*goodbye” -
does not match it as a regular expression

45

Working With Files

Wildcards are limited

The following commands helps us to find
files and run commands on them

46

find

Finds files with the given properties
find path .. [-operation ..]

Not just regular files - includes directories,
devices - everything it finds in the
filesystem

Starts at the given path and walks down
through every directory it finds

find

We can specity operators to control
which files we find
what to do with them when we find them

All operators begin with "-", e.q.
find $SHOME -print

Prints out the name of every file in your
home directory

48

find

Operators are handled left-to-right
Each operator is "true" or "false”

Stop processing operators for a file if an
operator is false

e.g. "-print" means print out the file
name and is always "true”

49

find

50

Another operator: -type filetype

Tests to see what kind of file it is

e.g. f =regular file, d = directory
find SHOME -type d -print

Prints all directories under your home
directory.

find

-name pattern = true if the name of the
file matches the wildcard pattern 'pattern’

find SHOME -type f -name '*.c’

Finds all files under your home directory
which are regular files and end in “.c”

So what can you do with this?
look at "-exec' operator for find!

51

xargs

Another way to use find is to combine it
with xargs

xXargs command

xargs executes given command for each word
In its stdin

find $HOME -type f -name '*.c’
-print | xargs wc -1

Counts number of words in all C files

52

NEVER-DO List in UNIX

Never switch off the power on a UNIX computer.

You could interrupt the system while it is writing to the disk drive and
destroy your disk.

Other users might be using the system.
Avoid using * with rmsuchasrm *, rm *.c

Do not name an important program core.

When a program crashes, UNIX dumps the entire kernel image to a
file called core.

Many scripts go around deleting these core files.

Do not name an executable file test.
There is a Unix command called test.

53

Command Terminators

Command terminator: new line or ;
% date; who

Another command terminator: &

$ nedit lab9.cé&

Tells the shell not to wait for the command to complete.

Used for a long-running command “in the background” while you
continue to use the xterm for other commands.

54

Command Terminators (cont.)

Use parentheses to group commands
% (sleep 5; date) & date
14929 # process ID of long-running command
Tue Nov 9 14:06:15 EST 2010 # output of 2" date
% Tue Nov 9 14:06:20 EST 2010 # output of 1%t date

The precedence of | is higher than that of ;
% date; who | wc -1
% (date; who) | wec -1

55

tee command

tee copies its input to a file as well as to standard output

(or to a pipe).

% date | tee date.out
Tue Nov 9 13:51:22 EST 2010
% cat date.out
Tue Nov 9 13:51:22 EST 2010
% date | tee date.out | wc
1 6 29
% cat date.out
Tue Nov 9 13:52:49 EST 2010

56

Comments

If a shell word begins with #, the rest of the line is
ignored.

Similar to // in Java.

% echo Hello #world

Hello
% echo Hello#world

Hello#world

57

Metacharacters

Most commonly used: *

Search the current directory for file names in which any
strings occurs in the position of *

%$ echo * # same effect as
o
(o}

To protect metacharacters from being interpreted:
enclose them in single quotes.

% echo ‘***x/
* % %

58

Metacharacters (cont.)

Or to put a backslash \ in front of each character:
% echo ***

* %k %

Double quotes can also be used to protect
metacharacters, but ...

The shell will interpret $, \ and ".." inside the double
quotes.

So don’t use double quotes unless you intend some
processing of the quoted string (see slide 10).

59

Quotes

Quotes do not have to surround the whole argument.
% echo x'*'y # same as echo ‘x*y’

x*y

What's the difference between these two commands?

60

Program Output as Arguments

To use the output of a command X as the argument of
another command Y, enclose X in back quotes: "X

% echo "date’

Tue Nov 9 13:11:03 EST 2010

% date # same effect as above
Tue Nov 9 13:11:15 EST 2010

% echo date

date
wec l1ls *°

o° o

we * # same as above

61

Program Output as Arguments (2)

Single quotes vs. double quotes:

% echo The time now 1s
The time now is Tue Nov

% echo "The time now 1is
The time now 1s Tue Nov

% echo 'The time now 1is

The time now is date

"date’
9 13:11:03 EST 2010

"date "

9 13:11:15 EST 2010

"date

62

Program Output as Arguments (3)

5 pwd
/cs/home

$ 1s -1 | we -1
26

% echo You have '1s -1 | we -1 files in the "'pwd directory

You have 26 files in the /cs/home directory

63

File/Directory Permissions

Letter Meaning

1

The user who owns the file (this means “you.”)

The group the file belongs to.

The other users

all of the above (an abbreviation for ugo)

Permission to read the file.

Permission to write the file.

Permission to execute the file, or, in the case of a directory, search it.

64

chmod Command

chmod who+permissions filename # or dirname

chmod who-permissions filename # or dirname

Examples:

chmod u+x my script # make file executable
chmod a+r index.html # for web pages
chmod a+rx Notes # for web pages

chmod a-rx Notes
chmod a-r index.html

65

chmod with Binary Numbers

chmod u+x my script
chmod a+r index.html

chmod a+rx Notes
chmod a-rx Notes

chmod a-r index.html

chmod
chmod

chmod
chmod
chmod
chmod
chmod

700
644

755
700
750
600
640

my script
index.html

Notes
Notes
Notes
index.html
index.html

66

chgrp Command

chgrp grp name filename # or dirname

Examples:
chgrp submit asgl
chgrp labtest 1lab9

To display the group(s) a user belongs to, use id
command:

$ id csel2345
uid=12695 (csel2345) gid=10000 (ugrad) groups=10000 (ugrad)

67

Next time ...

Writing Shell Scripts

Reading: Chapters 1, 2, 3.1 — 3.5
“Practical Programming in the UNIX Environment”

chmod tutorial:
http://catcode.com/teachmod/

68

