
Introduction to UNIX

CSE 2031
Fall 2012

November	 5,	 2012	

Introduction

 UNIX is an operating system (OS).
 Our goals:

 Learn how to use UNIX OS.
 Use UNIX tools for developing programs/

software, specifically shell programming.

2	

Processes

 Each running program on a UNIX system is
called a process.

 Processes are identified by a number (process id
or PID).

 Each process has a unique PID.
 There are usually several processes running

concurrently in a UNIX system.

3	

ps command

 % ps a # list all processes
 PID TTY TIME CMD
 2117 pts/24 00:00:00 pine
 2597 pts/79 00:00:00 ssh
 5134 pts/67 00:00:34 alpine
 7921 pts/62 00:00:01 emacs
13963 pts/24 00:00:00 sleep
13977 pts/93 00:00:00 ps
15190 pts/90 00:00:00 vim
18819 pts/24 00:00:07 stayAlive
24160 pts/44 00:00:01 xterm
. . .

4

The File System

 Directory structure
 Current working directory
 Path names
 Special notations

5	

Directory Structure

6	

Current Working Directory

 Every process has a current working directory.
 In a shell, the command ls shows the contents

of the current working directory.
 pwd shows the current working directory.
 cd changes the current working directory to

another.

7	

Path Names

•  A path name is a reference to something in the file
system.

•  A path name specifies the set of directories you have to
pass through to find a file.

•  Directory names are separated by '/' in UNIX.
•  Path names beginning with '/' are absolute path names.
•  Path names that do not begin with '/' are relative path

names (start search in current working directory).

8	

Special Characters

 . means the current directory
 .. means the parent directory

 cd ..
 cd ../Notes

 ~ means the home directory
 cat ~/lab3.c

 To go directly to your home directory, type
 cd

9	

Frequently Used Terminal Keystrokes

 Interrupt the current process: Ctrl-C
 End of file: Ctrl-D
 Read input (stdin) from a file

o a.out < input_file

 Redirect output (stdout) to a file
o  ls > all_files.txt # overwrites all_files.txt

 Append stdout to a file
o  ls >> all_files.txt # append new text to file

Wildcards (File Name Substitution)

  Goal: referring to several files in one go.
  ? match single character

  ls ~/C2031/lab5.???
  lab5.doc lab5.pdf lab5.out

  * match any number of characters
  ls ~/C2031/lab5.*

  […] match any character in the list enclosed by []
  ls ~/C2031/lab[567].c
  lab5.c lab6.c lab7.c

  We can combine different wildcards.
  ls [ef]*.c
 enum.c ex1.c fn2.c

11

Unix Commands

There are many of them

We will see some of the most useful ones

We know already:

ls, cp, mv, rm, pwd, mkdir, rmdir, man

12	

cat, more, tail

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% more phone_book
Similar to cat, except that the file
is displayed one screen at a time.

% tail myfile.txt
Display the last 10 lines

% tail -5 myfile.txt
Display the last 5 lines

% tail -1 myfile.txt
Display the last line

% tail +3 myfile.txt
Display the file starting from the
3rd line.

13

echo

  When one or more strings are provided as arguments,
echo by default repeats those strings on the screen.

% echo This is a test.
This is a test.
  It is not necessary to surround the strings with quotes, as

it does not affect what is written on the screen.
  If quotes (either single or double) are used, they are not

repeated on the screen.
% echo ‘This is’”a test.”
This is a test.
  To display single/double quotes, use \’ or \”
 14

echo (cont.)

% echo a \t b
a t b
% echo 'a \t b'
a b
% echo "a \t b"
a b

15

wc

% wc enum.c
 14 37 220 enum.c

% wc [e]*.c
 14 37 220 enum.c
 17 28 233 ex1.c
 21 46 300 ex2.c
 52 111 753 total

% wc -c enum.c
220 enum.c

% wc -w enum.c
37 enum.c

% wc -l enum.c
14 enum.c

16

sort

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% sort phone_book
Amy 416-123-4567
Annie 905-555-9876
John 647-999-4321
William 905-888-1234
Yvonne 416-987-6543

Try these options:
sort –r

 reverse normal order
sort –n

 numeric order
sort –nr

 reverse numeric order
sort –f

 case insensitive

17

cmp, diff

% cat phone_book
Yvonne 416-987-6543
Amy 416-123-4567
William 905-888-1234
John 647-999-4321
Annie 905-555-9876

% cat phone_book2
Yvonne 416-987-6543
Amy 416-111-1111
William 905-888-1234
John 647-999-9999
Annie 905-555-9876

% cmp phone_book phone_book2
phone_book phone_book2
differ: char 9, line 2

% diff phone_book
phone_book2
2c2
< Amy 416-123-4567

> Amy 416-111-1111
4c4
< John 647-999-4321

> John 647-999-9999

 18

who
% who
ossama pts/13 Nov 7 00:22 (ip-198-96-36-11.dynamic.yorku.ca)
hoda pts/21 Nov 4 16:49 (gomez.cs.yorku.ca)

gordon pts/24 Nov 5 10:40 (bas2-toronto08-1096793138.dsl.bell.ca)
minas pts/29 Nov 2 14:09 (monster.cs.yorku.ca)
jas pts/37 Oct 18 12:36 (brayden.cs.yorku.ca)
utn pts/93 Nov 7 12:21 (bas2-toronto44-1177753778.dsl.bell.ca)

 User name
 Terminal associated with the process
 Time when they logged in

19

kill

% ps a
 PID TTY TIME CMD
 2117 pts/24 00:00:00 pine
 2597 pts/79 00:00:00 ssh
 5134 pts/67 00:00:34 alpine
 7921 pts/62 00:00:01 emacs
13963 pts/24 00:00:00 sleep
13976 pts/43 00:00:00 sleep
13977 pts/93 00:00:00 ps
15190 pts/90 00:00:00 vim
24160 pts/44 00:00:01 xterm
. . .

% kill -9 7921

 9 is the KILL signal

20

history

% history 10
 323 12:45 ls
 324 12:47 cd Demo_2031/
 325 12:48 ls
 326 12:48 m ex1.c
 327 12:49 who
 328 12:50 history 10
 329 12:52 ls -a
 330 12:56 ls Stack/
 331 12:57 ls
 332 12:57 history 10

21

Pipes

  Pipe: a way to connect the output of one program to the
input of another program without any temporary file.

  Pipeline: connection of two or more programs through
pipes.

  Examples:
ls –l | wc –l # count number of files
who | sort # sort user list
who | wc –l # count number of users

22

23

field
delimiter

cut

 Used to split lines of a file
 A line is split into fields
 Fields are separated by delimiters
 A common case where a delimiter is a

space:
 hello there world

24

cut

 Syntax
 cut [-ffields] [-ccolumns]

 [-dcharacter] [filename …]
 If filenames are given on command line,

input is taken from those files
 If no filenames are given, input comes

from stdin
 This approach to input is very common

25

cut

 Two main forms - extracting fields
  cut -f3 -d,

 extract field 3 from each line
 fields are separated by ',’

 e.g. with an input of
  hello,there,world,!
 output would be just "world"

26

cut

 The other way - pulling out characters:
  cut -c30-40

 extract characters 30 through 40 (inclusive)
from each line

 Note that we can use ranges (e.g. 4-10) or
lists (e.g. 4,6,7) as values for -f or -c.

27

uniq

 Removes repeated lines in a file
  uniq [-c] [input [output]]

 Notice difference in args:
 1st filename is input file
 2nd filename is output file

 If input is not specified, use stdin
 If output is not specified, use stdout

28

uniq

 Only works for lines that are adjacent, e.g.
 abacus
 abacus
 bottle
 abacus
  becomes
 abacus
 bottle
 abacus

29

uniq

 With the -c option output is a count of
how many times each line was repeated

 For previous input:
  2 abacus
  1 bottle
  1 abacus

30

sort + uniq

 uniq is a little limited but we can combine it
with sort

  sort | uniq -c
  counts number of times line appears in

file
 output would now be:
  3 abacus
  1 bottle

31

abacus

abacus

bottle

abacus

abacus

abacus

abacus

bottle

3 abacus

1 bottle sort uniq

sort + uniq

 To understand:

32

tr

 "translates" characters
 Maps characters from one value to

another
  tr string1 string2
  tr [-d] [-c] string
 Input is always stdin, output is always

stdout
 A character in string1 is changed to the

corresponding character in string2

33

tr

 A simple example:
  tr x y
  All instances of 'x' are replaced with 'y'
 Each string can be a set of characters
  tr ab xy
  'a' is replaced with 'x', 'b' is replaced

with 'y'

34

tr

 The -d option means delete the given
characters

  tr -d xyz
  Delete all 'x', 'y', and 'z' characters
 The -c option means "complement" (i.e.

the inverse)
  tr -d -c xyz
 Delete all characters except 'x', 'y', and 'z'

35

Why Are These So Weird?

 Unix philosophy:
 Do one thing and do it well

 So 'tr' doesn't know how to read from files,
the "cat" command does know how:

  cat filename | tr …

36

Regular Expressions

 A regular expression is a special string
(like a wildcard pattern)

 A compact way of matching several lines
with a single string

37

Regular Expressions

 The basics:
  letters and numbers are literal - that is

they match themselves:
 e.g. "foobar" matches "foobar"
  '.' matches any character (just one)
 e.g. "fooba." matches "foobar",
"foobat", etc.

38

Regular Expressions

 Each '.' character must match exactly
one character

 e.g. "f..bar" matches "foobar" but
not "fubar"

 [xxx] matches any character in the set
 e.g. "foob[aeiou]r" matches
"foobar", "foober", "foobir", etc.

39

Regular Expressions

 '*' means "0 or more of the last
character"

 "fo*" matches "f", "fo", "foo",
"fooo", "foooo", etc.

 "[0-9][0-9]*" matches a decimal
number

 ".*" matches anything (including an
empty string)

 '?' means "0 or 1 of the last character"

40

Regular Expressions

 "^" matches the beginning of the line,
"$" matches the end of the line

 "^foobar" - matches any line that starts
with "foobar"

 "foobar$" - matches any line that ends
with "foobar"

41

grep

 Prints out all lines in the input that match
the given regular expression

  grep [options] pattern
[file …]

 e.g.
  grep hello
  Prints out all lines containing "hello"

42

grep

 A warning: does the following work?
  grep ^[a-z]*
 If you type it in, it won't work
 Why not?

43

grep

 Options control searches:
 -i - case-insensitive search (don't

distinguish between 'a' and 'A')
 -v - invert search (print out lines which

don't match)
 -l - when used with filenames, print out

names of files with matching lines

44

grep

 Some interesting uses:
  grep -v '^#'
  Removes all lines beginning with

'#'
  grep -v '^[]*$'
  Removes all lines which are either

 empty or contain only spaces

45

fgrep

 Like grep, fgrep searches for things but
does not do regular expressions - just
fixed strings

 fgrep == faster grep
  fgrep 'hello.*goodbye'
  Searches for string “hello.*goodbye” -

does not match it as a regular expression

46

Working With Files

 Wildcards are limited
 The following commands helps us to find

files and run commands on them

47

find

 Finds files with the given properties
  find path … [-operation …]
 Not just regular files - includes directories,

devices - everything it finds in the
filesystem

 Starts at the given path and walks down
through every directory it finds

48

find

 We can specify operators to control
 which files we find
 what to do with them when we find them

 All operators begin with "-", e.g.
  find $HOME -print
  Prints out the name of every file in your

home directory

49

find

 Operators are handled left-to-right
 Each operator is "true" or "false"
 Stop processing operators for a file if an

operator is false
 e.g. "-print" means print out the file

name and is always "true"

50

find

 Another operator: -type filetype
 Tests to see what kind of file it is
 e.g. f = regular file, d = directory
  find $HOME -type d -print
   Prints all directories under your home
directory.

51

find

 -name pattern = true if the name of the
file matches the wildcard pattern 'pattern’

 find $HOME -type f -name '*.c’
Finds all files under your home directory
which are regular files and end in “.c”
 So what can you do with this?

 look at '-exec' operator for find!

52

xargs

 Another way to use find is to combine it
with xargs

 xargs command
 xargs executes given command for each word

in its stdin
find $HOME -type f -name '*.c’
-print | xargs wc -l

  Counts number of words in all C files

NEVER-DO List in UNIX

  Never switch off the power on a UNIX computer.
 You could interrupt the system while it is writing to the disk drive and

destroy your disk.
 Other users might be using the system.

  Avoid using * with rm such as rm *, rm *.c
  Do not name an important program core.

 When a program crashes, UNIX dumps the entire kernel image to a
file called core.

 Many scripts go around deleting these core files.

  Do not name an executable file test.
 There is a Unix command called test.

53

Command Terminators

  Command terminator: new line or ;
% date; who

  Another command terminator: &
% nedit lab9.c&

 Tells the shell not to wait for the command to complete.
 Used for a long-running command “in the background” while you

continue to use the xterm for other commands.

54

Command Terminators (cont.)

  Use parentheses to group commands
% (sleep 5; date) & date
14929 # process ID of long-running command

Tue Nov 9 14:06:15 EST 2010 # output of 2nd date

% Tue Nov 9 14:06:20 EST 2010 # output of 1st date

  The precedence of | is higher than that of ;
% date; who | wc -l
% (date; who) | wc -l

55

tee command

  tee copies its input to a file as well as to standard output
(or to a pipe).

% date | tee date.out
Tue Nov 9 13:51:22 EST 2010
% cat date.out
Tue Nov 9 13:51:22 EST 2010
% date | tee date.out | wc
 1 6 29
% cat date.out
Tue Nov 9 13:52:49 EST 2010

 56

Comments

  If a shell word begins with #, the rest of the line is
ignored.

  Similar to // in Java.

% echo Hello #world
Hello
% echo Hello#world
Hello#world

57

Metacharacters

  Most commonly used: *
  Search the current directory for file names in which any

strings occurs in the position of *
% echo * # same effect as
% ls *

  To protect metacharacters from being interpreted:
enclose them in single quotes.

% echo ‘***’

58

Metacharacters (cont.)

  Or to put a backslash \ in front of each character:
% echo ***

  Double quotes can also be used to protect
metacharacters, but …

  The shell will interpret $, \ and `…` inside the double
quotes.

  So don’t use double quotes unless you intend some
processing of the quoted string (see slide 10).

59

Quotes

  Quotes do not have to surround the whole argument.
% echo x’*’y # same as echo ‘x*y’
x*y

  What’s the difference between these two commands?
% ls x*y
% ls ‘x*y’

60

Program Output as Arguments

  To use the output of a command X as the argument of
another command Y, enclose X in back quotes: `X`

% echo `date`
Tue Nov 9 13:11:03 EST 2010
% date # same effect as above
Tue Nov 9 13:11:15 EST 2010
% echo date
date
% wc `ls *`
% wc * # same as above

61

Program Output as Arguments (2)

  Single quotes vs. double quotes:

% echo The time now is `date`
The time now is Tue Nov 9 13:11:03 EST 2010

% echo "The time now is `date`"
The time now is Tue Nov 9 13:11:15 EST 2010

% echo 'The time now is `date`'
The time now is `date`

62

Program Output as Arguments (3)

% pwd
/cs/home

% ls –1 | wc –l
26

% echo You have `ls –1 | wc –l` files in the `pwd` directory
You have 26 files in the /cs/home directory

63

File/Directory Permissions

64

chmod Command

chmod who+permissions filename # or dirname
chmod who-permissions filename # or dirname

Examples:
chmod u+x my_script # make file executable
chmod a+r index.html # for web pages
chmod a+rx Notes # for web pages
chmod a-rx Notes
chmod a-r index.html

65

chmod with Binary Numbers

chmod u+x my_script
chmod a+r index.html

chmod a+rx Notes
chmod a-rx Notes

chmod a-r index.html

chmod 700 my_script
chmod 644 index.html

chmod 755 Notes
chmod 700 Notes
chmod 750 Notes
chmod 600 index.html
chmod 640 index.html

66

chgrp Command

chgrp grp_name filename # or dirname

 Examples:
chgrp submit asg1
chgrp labtest lab9

 To display the group(s) a user belongs to, use id
command:
% id cse12345
uid=12695(cse12345) gid=10000(ugrad) groups=10000(ugrad)

67

Next time …

  Writing Shell Scripts

  Reading: Chapters 1, 2, 3.1 – 3.5
“Practical Programming in the UNIX Environment”

 chmod tutorial:
http://catcode.com/teachmod/

68

