
Structures

CSE 2031
Fall 2012

1 October 22, 2012

Basics of Structures (6.1)

struct point {
 int x;
 int y;
};

keyword struct introduces a

structure declaration.
point: structure tag
x, y: members
The same member names may

occur in different structures.

  Now struct point is a
valid type.

  Defining struct variables:
struct point pt;
struct point
 maxpt = {320, 200};

  A struct declaration defines
a type.
 struct { ... } x, y, z;
 or struct point x,y,z;
 is syntactically analogous to
 int x, y, z;

 2

Using Structures

  Members are accessed using operator “.”
 structure-name.member
 printf(“%d,%d", pt.x, pt.y);
 double dist, sqrt(double);
 dist = sqrt((double)pt.x * pt.x +
 (double)pt.y * pt.y);

  Structures cannot be assigned.
 struct point pt1, pt2;
 pt1.x = 0; pt1.y = 0;
 pt2 = pt1; /* WRONG !!! */

3

Nested Structures

struct rect {
 struct point pt1;
 struct point pt2;
};
struct rect screen;
screen.pt1.x = 1;
screen.pt1.y = 2;
screen.pt2.x = 8;
screen.pt2.y = 7;

4

Structures and Functions (6.2)

  Returning a structure from a function.
/* makepoint: make a point from x and y components */
struct point makepoint(int x, int y) {
 struct point temp;
 temp.x = x;
 temp.y = y;
 return temp;

}
struct rect screen;
struct point middle;
struct point makepoint(int, int);
screen.pt1 = makepoint(0,0);
screen.pt2 = makepoint(XMAX, YMAX);
middle = makepoint((screen.pt1.x + screen.pt2.x)/2,
 (screen.pt1.y + screen.pt2.y)/2);

5

Structures and Functions (cont.)

  Passing structure arguments to functions: structure parameters are
passed by values like int, char, float, etc. (a copy of the structure is
sent to the function).

/* addpoints: add two points */
struct point addpoint(struct point p1, struct point p2)
{
 p1.x += p2.x;
 p1.y += p2.y;
 return p1;

}

  Note: the components in p1 are incremented rather than using an
explicit temporary variable to emphasize that structure parameters
are passed by value like any others (no changes to original struct).

6

Pointers to Structures

  If a large structure is to be passed to a function, it is
generally more efficient to pass a pointer than to copy
the whole structure.

struct point *pp;
struct point origin;
pp = &origin;
printf("origin is (%d,%d)\n", (*pp).x, (*pp).y);

  Note: *pp.x means *(pp.x), which is illegal (why?)

7

Pointers to Structures: Example

/* addpoints: add two points */
struct point addpoint (struct point *p1, struct point *p2)
{
 struct point temp;
 temp.x = (*p1).x + (*p2).x;
 temp.y = (*p1).y + (*p2).y;
 return temp;

}

main() {
 struct point a, b, c;
 /* Input or initialize structures a and b */
 c = addpoint(&a, &b);

}

8

Pointers to Structures: Shorthand

  (*pp).x can be written as pp->x

printf("origin is (%d,%d)\n", pp->x, pp->y);

struct rect r, *rp = &r;
r.pt1.x = 1;
rp->pt1.x = 2;
(r.pt1).x = 3;
(rp->pt1).x = 4;

  Note: Both . and -> associate from left to right.

9

Arrays of Structures (6.3)

 struct dimension {
 float width;
 float height;
 };
 struct dimension chairs[2];
 struct dimension *tables;
 tables = (struct dimension*) malloc
 (20 * sizeoff(struct dimension));

10

Initializing Structures

 struct dimension sofa = {2.0, 3.0};

 struct dimension chairs[] = {
 {1.4, 2.0},
 {0.3, 1.0},
 {2.3, 2.0} };

11

Arrays of Structures: Example

struct key {
 char *word;
 int count;

};

struct key keytab[NKEYS];
struct key *p;
for (p = keytab;
 p < keytab + NKEYS; p++)
 printf("%4d %s\n",
 p->count, p->word);

struct key {
 char *word;
 int count;

} keytab[] = {
"auto", 0,
"break", 0,
"case", 0,
"char", 0,
"const", 0,

"continue", 0,
"default", 0,
/* ... */
"unsigned", 0,
"void", 0,
"volatile", 0,

"while", 0

};

12

Pointers to Structures (6.4)

struct key keytab[NKEYS];
struct key *p;
for (p = keytab; p < keytab + NKEYS; p++)
 printf("%4d %s\n", p->count, p->word);

  p++ increments p by the correct amount (i.e., structure size) to get the next
element of the array of structures.

struct {
 char c; /* one byte */
 int i; /* four bytes */

};
  What is the total structure size?
  Use the sizeof operator to get the correct structure size.

13

Self-referential Structures (6.5)

Example: (singly) linked list

struct list {
 int data;
 struct list *next;
 };

14

3

Linked List

  Pointer head points to the first element
  Last element pointer is NULL
  Example (next slide): build a linked list with data being

non-negative integers, then search for a number.
  Insertion at the end (rear) of the list.

  We also learn how to dynamically allocate a structure.

3 10 6 NULL

 head

15

Linked List Implementation
#include <stdio.h>
#include <stdlib.h>
main() {

 struct list {
 int data;
 struct list *next;
 } *head, *p, *last;
 int i;

 /* Create a dummy node, which

 simplifies insertion and deletion */
 head = (struct list *) malloc
 (sizeof(struct list));
 head─>data = -1;
 head─>next = NULL;
 last = head;
 scanf(“%d”, &i); /* input 1st element */

 while(i >= 0) {
 p = (struct list *)

 malloc(sizeof(struct list));
 p─>data = i;
 p─>next = NULL;
 last─>next = p;

 last = p;
 scanf(“%d”, &i);
 } /* while */

 printf(“Enter the number to search for “);
 scanf(“%d”, &i);
 for(p = head; p != NULL; p = p─>next)
 if(p─>data == i)
 printf("FOUND %d \n“, i);

 } /* main */

16

typedef (6.7)

  For creating new data type names

typedef int Length;
Length len, maxlen;
Length *lengths[];

typedef char *String;
String p, lineptr[MAXLINES];
p = (String) malloc(100);
int strcmp(String, String);

17

typedef with struct

 We can define a new type and use it later

typedef struct {
 int x,y;
 float z;
 } mynewtype;
 mynewtype a, b, c, x;

 Now, mynewtype is a type in C just like int or
float.

18

Self-referential Structures: More Examples

 Binary trees (6.5)
 Hash tables (6.6)

To be covered later if time permits.

19

File Access (7.5)

CSE 2031
Fall 2012

20 October 22, 2012

Declaring and Opening Files
FILE *fp; /* file pointer */
FILE *fopen(char *name, char *mode);

Example:
FILE *ifp, *ofp;
char iname[50], oname[50];
scanf(“%s %s”, iname, oname);
ifp = fopen(iname, "r");
if (ifp == NULL) { ... }
ofp = fopen(oname, "w");
if (ofp == NULL) { ... }
 21

Modes

fp = fopen(name, "r");
  Returns NULL if file does not exist, or has no read

permission.

fp = fopen(name, “w");
  If file does not exist, one will be created for writing.
  If file already exists, the content will be erased when the

file is opened. So be careful!
  Returns NULL if file has no write permission.

22

Modes (cont.)
fp = fopen(name, “a"); /* append */
  If file does not exist, one will be created for writing.
  If file already exists, the content will be preserved.
  Returns NULL if file has no write permission.

  May combine multiple modes.
fp = fopen(name, "rw");

 File may be read first, but the old content will be erased as soon as
something is written to the file.

fp = fopen(name, "ra");
fp = fopen(name, “aw"); /* same as “a” */
 23

Reading and Writing Files

int getc(FILE *fp)
int putc(int c, FILE *fp)
int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

int c;
while ((c = getc(ifp)) != EOF)
 putc(c, ofp);

char ch;
while (fscanf(ifp, “%c”, &ch) != EOF)
 fprintf(ofp, “%c”, ch);

24

Closing Files

int fclose(FILE *fp)

fclose(ifp);
fclose(ofp);

  Most operating systems have some limit on the number of files that
a program may have open simultaneously ⇒ free the file pointers
when they are no longer needed.

  fclose is called automatically for each open file when a program
terminates normally.

  For output files: fclose flushes the buffer in which putc is
collecting output.

25

Reminder: I/O Redirection

  In many cases, I/O redirection is simpler than using file
pointers.

a.out < input_file > output_file

a.out < input_file >> output_file

26

Reminders

 Midterm (next week)
 Lab test 1 (Oct. 26 and 29)
 Next lecture: Unix

27

