
Structures

CSE 2031
Fall 2012

1 October 22, 2012

Basics of Structures (6.1)

struct point {
 int x;
 int y;
};

keyword struct introduces a

structure declaration.
point: structure tag
x, y: members
The same member names may

occur in different structures.

  Now struct point is a
valid type.

  Defining struct variables:
struct point pt;
struct point
 maxpt = {320, 200};

  A struct declaration defines
a type.
 struct { ... } x, y, z;
 or struct point x,y,z;
 is syntactically analogous to
 int x, y, z;

 2

Using Structures

  Members are accessed using operator “.”
 structure-name.member
 printf(“%d,%d", pt.x, pt.y);
 double dist, sqrt(double);
 dist = sqrt((double)pt.x * pt.x +
 (double)pt.y * pt.y);

  Structures cannot be assigned.
 struct point pt1, pt2;
 pt1.x = 0; pt1.y = 0;
 pt2 = pt1; /* WRONG !!! */

3

Nested Structures

struct rect {
 struct point pt1;
 struct point pt2;
};
struct rect screen;
screen.pt1.x = 1;
screen.pt1.y = 2;
screen.pt2.x = 8;
screen.pt2.y = 7;

4

Structures and Functions (6.2)

  Returning a structure from a function.
/* makepoint: make a point from x and y components */
struct point makepoint(int x, int y) {
 struct point temp;
 temp.x = x;
 temp.y = y;
 return temp;

}
struct rect screen;
struct point middle;
struct point makepoint(int, int);
screen.pt1 = makepoint(0,0);
screen.pt2 = makepoint(XMAX, YMAX);
middle = makepoint((screen.pt1.x + screen.pt2.x)/2,
 (screen.pt1.y + screen.pt2.y)/2);

5

Structures and Functions (cont.)

  Passing structure arguments to functions: structure parameters are
passed by values like int, char, float, etc. (a copy of the structure is
sent to the function).

/* addpoints: add two points */
struct point addpoint(struct point p1, struct point p2)
{
 p1.x += p2.x;
 p1.y += p2.y;
 return p1;

}

  Note: the components in p1 are incremented rather than using an
explicit temporary variable to emphasize that structure parameters
are passed by value like any others (no changes to original struct).

6

Pointers to Structures

  If a large structure is to be passed to a function, it is
generally more efficient to pass a pointer than to copy
the whole structure.

struct point *pp;
struct point origin;
pp = &origin;
printf("origin is (%d,%d)\n", (*pp).x, (*pp).y);

  Note: *pp.x means *(pp.x), which is illegal (why?)

7

Pointers to Structures: Example

/* addpoints: add two points */
struct point addpoint (struct point *p1, struct point *p2)
{
 struct point temp;
 temp.x = (*p1).x + (*p2).x;
 temp.y = (*p1).y + (*p2).y;
 return temp;

}

main() {
 struct point a, b, c;
 /* Input or initialize structures a and b */
 c = addpoint(&a, &b);

}

8

Pointers to Structures: Shorthand

  (*pp).x can be written as pp->x

printf("origin is (%d,%d)\n", pp->x, pp->y);

struct rect r, *rp = &r;
r.pt1.x = 1;
rp->pt1.x = 2;
(r.pt1).x = 3;
(rp->pt1).x = 4;

  Note: Both . and -> associate from left to right.

9

Arrays of Structures (6.3)

 struct dimension {
 float width;
 float height;
 };
 struct dimension chairs[2];
 struct dimension *tables;
 tables = (struct dimension*) malloc
 (20 * sizeoff(struct dimension));

10

Initializing Structures

 struct dimension sofa = {2.0, 3.0};

 struct dimension chairs[] = {
 {1.4, 2.0},
 {0.3, 1.0},
 {2.3, 2.0} };

11

Arrays of Structures: Example

struct key {
 char *word;
 int count;

};

struct key keytab[NKEYS];
struct key *p;
for (p = keytab;
 p < keytab + NKEYS; p++)
 printf("%4d %s\n",
 p->count, p->word);

struct key {
 char *word;
 int count;

} keytab[] = {
"auto", 0,
"break", 0,
"case", 0,
"char", 0,
"const", 0,

"continue", 0,
"default", 0,
/* ... */
"unsigned", 0,
"void", 0,
"volatile", 0,

"while", 0

};

12

Pointers to Structures (6.4)

struct key keytab[NKEYS];
struct key *p;
for (p = keytab; p < keytab + NKEYS; p++)
 printf("%4d %s\n", p->count, p->word);

  p++ increments p by the correct amount (i.e., structure size) to get the next
element of the array of structures.

struct {
 char c; /* one byte */
 int i; /* four bytes */

};
  What is the total structure size?
  Use the sizeof operator to get the correct structure size.

13

Self-referential Structures (6.5)

Example: (singly) linked list

struct list {
 int data;
 struct list *next;
 };

14

3

Linked List

  Pointer head points to the first element
  Last element pointer is NULL
  Example (next slide): build a linked list with data being

non-negative integers, then search for a number.
  Insertion at the end (rear) of the list.

  We also learn how to dynamically allocate a structure.

3 10 6 NULL

 head

15

Linked List Implementation
#include <stdio.h>
#include <stdlib.h>
main() {

 struct list {
 int data;
 struct list *next;
 } *head, *p, *last;
 int i;

 /* Create a dummy node, which

 simplifies insertion and deletion */
 head = (struct list *) malloc
 (sizeof(struct list));
 head─>data = -1;
 head─>next = NULL;
 last = head;
 scanf(“%d”, &i); /* input 1st element */

 while(i >= 0) {
 p = (struct list *)

 malloc(sizeof(struct list));
 p─>data = i;
 p─>next = NULL;
 last─>next = p;

 last = p;
 scanf(“%d”, &i);
 } /* while */

 printf(“Enter the number to search for “);
 scanf(“%d”, &i);
 for(p = head; p != NULL; p = p─>next)
 if(p─>data == i)
 printf("FOUND %d \n“, i);

 } /* main */

16

typedef (6.7)

  For creating new data type names

typedef int Length;
Length len, maxlen;
Length *lengths[];

typedef char *String;
String p, lineptr[MAXLINES];
p = (String) malloc(100);
int strcmp(String, String);

17

typedef with struct

 We can define a new type and use it later

typedef struct {
 int x,y;
 float z;
 } mynewtype;
 mynewtype a, b, c, x;

 Now, mynewtype is a type in C just like int or
float.

18

Self-referential Structures: More Examples

 Binary trees (6.5)
 Hash tables (6.6)

To be covered later if time permits.

19

File Access (7.5)

CSE 2031
Fall 2012

20 October 22, 2012

Declaring and Opening Files
FILE *fp; /* file pointer */
FILE *fopen(char *name, char *mode);

Example:
FILE *ifp, *ofp;
char iname[50], oname[50];
scanf(“%s %s”, iname, oname);
ifp = fopen(iname, "r");
if (ifp == NULL) { ... }
ofp = fopen(oname, "w");
if (ofp == NULL) { ... }
 21

Modes

fp = fopen(name, "r");
  Returns NULL if file does not exist, or has no read

permission.

fp = fopen(name, “w");
  If file does not exist, one will be created for writing.
  If file already exists, the content will be erased when the

file is opened. So be careful!
  Returns NULL if file has no write permission.

22

Modes (cont.)
fp = fopen(name, “a"); /* append */
  If file does not exist, one will be created for writing.
  If file already exists, the content will be preserved.
  Returns NULL if file has no write permission.

  May combine multiple modes.
fp = fopen(name, "rw");

 File may be read first, but the old content will be erased as soon as
something is written to the file.

fp = fopen(name, "ra");
fp = fopen(name, “aw"); /* same as “a” */
 23

Reading and Writing Files

int getc(FILE *fp)
int putc(int c, FILE *fp)
int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

int c;
while ((c = getc(ifp)) != EOF)
 putc(c, ofp);

char ch;
while (fscanf(ifp, “%c”, &ch) != EOF)
 fprintf(ofp, “%c”, ch);

24

Closing Files

int fclose(FILE *fp)

fclose(ifp);
fclose(ofp);

  Most operating systems have some limit on the number of files that
a program may have open simultaneously ⇒ free the file pointers
when they are no longer needed.

  fclose is called automatically for each open file when a program
terminates normally.

  For output files: fclose flushes the buffer in which putc is
collecting output.

25

Reminder: I/O Redirection

  In many cases, I/O redirection is simpler than using file
pointers.

a.out < input_file > output_file

a.out < input_file >> output_file

26

Reminders

 Midterm (next week)
 Lab test 1 (Oct. 26 and 29)
 Next lecture: Unix

27

