
Arrays and Pointers (part 1)
CSE 2031
Fall 2012

1 October 1, 2012

Arrays

 Grouping of data of the same type.
 Loops commonly used for manipulation.
 Programmers set array sizes explicitly.

2

Arrays: Example

 Syntax
type name[size];

 Examples
int bigArray[10];
double a[3];
char grade[10], oneGrade;

3

Arrays: Definition and Access

 Defining an array: allocates memory
 int score[5];
 Allocates an array of 5 integers named "score"

 Individual parts can be called:
 Indexed or subscripted variables
 "Elements" of the array

 Value in brackets called index or subscript
 Numbered from 0 to (size – 1)

4

Arrays Stored in Memory

a[0]

a[1]

a[2]

a[n]

1234
1235
1236
1237
1238
…..
…
…

1260
1261 Some other

variables
5

Initialization

•  In declarations enclosed in curly braces

int a[5] = {11,22}; Declares array a and initializes first two
elements and all remaining set to zero

int b[] = {1,2,8,9,5}; Declares array b and initializes
all elements and sets the length
of the array to 5

6

Array Access

x = ar[2];
ar[3] = 2.7;

 What is the difference between
 ar[i]++, ar[i++], ar[++i] ?

7

Pointers

CSE 2031
Fall 2012

8

Pointers and Addresses (5.1)

 Memory address of a variable

 Declared with data type, * and identifier
type *pointer_var1, *pointer_var2, …;

 Example.
double *p;
int *p1, *p2;

 There has to be a * before EACH of the pointer
variables

9

Pointers and Addresses (cont.)

•  Use the "address of" operator (&)
•  General form:

 pointer_variable = &ordinary_variable

Name of the pointer Name of ordinary
 variable

10

Using a Pointer Variable

  Can be used to access a value
  Unary operator * used

 * pointer_variable
  In executable statement, indicates value

  Example
 int *p1, v1;
v1 = 0;
p1 = &v1;
*p1 = 42;
printf(“%d\n“,v1);
printf(“%d\n,*p1);

Output:
42
42

11

Pointer Example 1

x = 25;
y = x;
z = &x;

 25

1200 - 3 1204 – 7 1208 - 11

 9608 - 11 8404 - 7

25 1204

 int x,y;

 int *z;

12

x

y z

Pointer Variables

z = 1024; BAD idea

Instead, use z = &x

13

Pointer Example 2
int x = 25, *y, z;

y = &x;

z = *y;

 14

 25

1200 - 3 1204 – 7 1208 - 11

 9608 - 11 8404 - 7

1204 25

x

y z

Pointer Example 3

15

More Examples

int x = 1, y = 2, z[10], k;
int *ip;
ip = &x; /* ip points to x*/
y = *ip; /* y is now 1 */
ip = 0; / x is now 0 */
z[0] = 0;
ip = &z[0]; /* ip points to z[0] */
for (k = 0; k < 10; k++)
 z[k] = *ip + k;

*ip = *ip + 100;
++*ip;
(*ip)++; /* How about *ip++ ??? */

16

Pointers and Function Arguments (5.2)

Write a function that swaps
the contents of two
integers a and b.

void main() {
int a, b;
/* Input a and b */
swap(a, b);
printf(“%d %d”, a, b);

{

C passes arguments to
functions by values.

void swap(int x, int y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;

}

17

The Correct Version

void swap(int *px, int *py)
{
 int temp;
 temp = *px;
 *px = *py;
 *py = temp;

}

void main() {

int a, b;
/* Input a and b */
swap(&a, &b);
printf(“%d %d”, a, b);

{
18

Arrays and Pointers

19

Pointers and Arrays (5.3)

  Identifier of an array is equivalent to the address of its
first element.

 int numbers[20];
int *p;

p = numbers; // Valid
numbers = p; // Invalid

  p and numbers are equivalent and they have the same
properties.

  Only difference is that we could assign another value to
the pointer p whereas numbers will always point to the
first of the 20 integer numbers of type int.

20

Pointers and Arrays: Example

int a[10];
/* Init a[i] = i */

int *pa;
pa = &a[0]
x = *pa;
/*same as x = a[0]*/

int y, z;
y = *(pa + 1);
z = *(pa + 2);

21

Pointers and Arrays: More Examples

int a[10], *pa;
pa = a;
/* same as pa = &a[0]*/
pa++;
/*same as pa = &a[1]*/

a[i] ⇔ *(a+i)
&a[i] ⇔ a+i
pa[i] ⇔ *(pa+i)

Notes
a = pa; a++; are illegal.

Think of a as a constant, not a
modifiable variable.

p[-1], p[-2], etc. are

syntactically legal.

22

Computing String Lengths

/* strlen: return length of string s */
int strlen(char *s) /* or (char s[]) */
{
 int n;
 for (n = 0; *s != '\0', s++)
 n++;
 return n;
}

Callers:
strlen("hello, world”); /* string constant */
strlen(array); /* char array[100]; */
strlen(ptr); /* char *ptr; pointing to an array */

23

Passing Sub-arrays to Functions

  It is possible to pass part of an
array to a function, by passing
a pointer to the beginning of
the sub-array.

my_func(int ar[]) {...}
or

my_func(int *ar) {...}

my_func(&a[5])
or

my_func(a + 5)

24

Arrays Passed to a Function

 Arrays passed to a function are passed by
reference.

 The name of the array is a pointer to its first
element.

  Example:
 copy_array(int A[], int B[]);

 The call above does not copy the array in the
function call, just a reference to it.

25

Address Arithmetic (5.4)
Given pointers p and q of the same type and integer n, the

following pointer operations are legal:
  p + n, p – n

 n is scaled according to the size of the objects p points to. If p
points to an integer of 4 bytes, p + n advances by 4*n bytes.

  q – p, q – p + 10, q – p + n (assuming q > p)
 But p + q is illegal!

  q = p; p = q + 100;
  If p and q point to different types, must cast first. Otherwise, the

assignment is illegal!

  if (p == q), if (p != q + n)
  p = NULL;
  if (p == NULL), same as if (!p) 26

Address Arithmetic: Example

/* strlen: return length of string s */
int strlen(char *s)
{
 char *p = s;
 while (*p != '\0')
 p++;
 return p - s;
}

27

Address Arithmetic: Summary

  Legal:
 assignment of pointers of the same type
 adding or subtracting a pointer and an integer
  subtracting or comparing two pointers to members of the same

array
 assigning or comparing to zero (NULL)

  Illegal:
 add two pointers
 multiply or divide or shift or mask pointer variables
 add float or double to pointers
 assign a pointer of one type to a pointer of another type (except for

void *) without a cast

28

Character Pointers and Functions (5.5)

  A string constant (“hello world”) is an array of characters.
  The array is terminated with the null character '\0' so that

programs can find the end.

 char *pmessage;
 pmessage = "now is the time";

 assigns to pmessage a pointer to the character array. This is not a
string copy; only pointers are involved.

 C does not provide any operators for processing an entire string of
characters as a unit.

29

Important Difference between ...

char amessage[] = "now is the time"; /* an array */
char *pmessage = "now is the time"; /* a pointer */

  amessage will always refer to the same storage.
  pmessage may later be modified to point elsewhere.

30

Example: String Copy Function

/* strcpy: copy t to s; array
subscript version */

void strcpy(char *s, char *t)
{
 int i;
 i = 0;
 while ((s[i] = t[i]) != '\0')
 i++;
}

/* strcpy: copy t to s; pointer
version */

void strcpy(char *s, char *t)
{
 int i;
 i = 0;
 while ((*s = *t) != '\0') {
 s++; t++;
 }
}

/* strcpy: copy t to s; pointer

version 2 */
void strcpy(char *s, char *t)

{
while ((*s++ = *t++) != '\0') ;
} 31

Dynamic Memory Allocation

CSE 2031
Fall 2012

32

Dynamic Memory Allocation (7.8.5)

How to allocate memory during run time?

int x = 10;
int my_array[x]; /* not allowed in C */

33

malloc()

 In stdlib.h

void *malloc(int n);

 Allocates memory at run time.
 Returns a pointer (to a void) to at least n bytes

available.
 Returns null if the memory was not allocated.
 The allocated memory is not initialized.

34

 calloc()

 void *calloc(int n, int s);

 Allocates an array of n elements where each
element has size s;

 calloc() initializes the allocated memory all to 0.

35

 realloc()

 What if we want our array to grow (or shrink)?

 void *realloc(void *ptr, int n);

 Resizes a previously allocated block of memory.
 ptr must have been returned from a previous
calloc, malloc, or realloc.

 The new array may be moved if it cannot be
extended in its current location.

36

 free()

 void free(void *ptr)

 Releases the memory we previously allocated.
 ptr must have been returned from a previous
calloc, malloc, or realloc.

 C does not do automatic “garbage collection”.

37

Example

#include<stdio.h>

#include<stdlib.h>

main() {

 int *a, i, n, sum=0;

 printf(“Input an aray size “);

 scanf(“%d”, &n);

 a = calloc(n, sizeof(int));

 /* a = malloc (n * sizeof(int)) */

 for(i=0; i<n; i++) scanf(“%d”, &a[i]);

 for(i=0; i<n; i++) sum += a[i];

 free(a);

 printf(“Number of elelments = %d and the sum is %d\n”,n,sum);

}
 38

Next time ...

 Structures (Chapter 6)

39

