
1

Control Flow (Chapter 3)

CSE 2031
Fall 2012

1 September 24, 2012

Statements and Blocks (3.1)

 Statement: followed by a semicolon.
 Block

 enclosed between { and }
 syntactically equivalent to a single statement
 no semicolon after the right brace

 Variables can be declared inside any block.

2

Control Flow Statements

 Similar to Java
 if – else
 else – if
 switch
 while
 for
 do – while

 break
 continue
 goto
  labels

3

if – else

if (n > 0)
 if (a > b)
 z = a;
 else
 z = b;

if (n > 0) {
 if (a > b)
 z = a;
}
else
 z = b;

4

if – else – if

int binary_search(int x, int v[], int n) {
 int low, high, mid;
 low = 0;
 high = n - 1;
 while (low <= high) {
 mid = (low + high)/2;
 if (x < v[mid])
 high = mid + 1;
 else if (x > v[mid])
 low = mid + 1;
 else /* found match */
 return mid;
 }
 return -1; /* no match */

} 5

switch
while ((c = getchar()) != EOF) {
 switch (c) {
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 ndigit[c-'0']++;
 break;
 case ' ':
 case '\n':
 case '\t':
 nwhite++;
 break;
 default:
 nother++;
 break;
 }

}
6

2

7

Switch

 All cases must be:
 unique (cannot duplicate cases)
 constant, e.g. case 2*x: is invalid

 Guidelines
 avoid deliberate fall-through
 put a “break” at the end of the switch statement

while and for Loops

while ((c = getchar()) == ' ' || c == '\n'
 || c = '\t')
 ; /* skip white space characters */

for (i = 0; i < n; i++)
 ...

8

do – while

do {
 s[i++] = n % 10 + '0';
} while ((n /= 10) > 0);

Note: the above curly brackets are not necessary. They

just make the code more readable.

9

continue

Skip negative elements; increment non-negative elements.

for (i = 0; i < n; i++) {
 if (a[i] < 0) /* skip negative */

 continue;
 a[i]++; /* increment non-negative */
}

10

break

Return the index of the first negative element.

...
for (i = 0; i < n; i++)
 if (a[i] < 0) /* 1st negative element */
 break;
if (i < n)
 return i;
...

11

goto and Labels

Determine whether arrays a and b have an element in common.

 for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 if (a[i] == b[j])
 goto found;
 /* didn't find any common element */
 ...
found:
 /* got one: a[i] == b[j] */
 ...

12

3

Notes

 Code that relies on goto statements is generally
harder to understand and to maintain. So goto
statements should be used rarely, if at all.

 break and continue should be used only
when necessary.

13

Functions and Program
Structure (Chapter 4)

CSE 2031
Fall 2012

14 September 24, 2012

15

Program Structure

 C programs are comprised of variables
and functions.

 We have discussed variables, expressions
and control flow.

 We now want to combine these into a
program

16

Functions

 A function is a set of statements that may
have:
 a number of arguments, that is values that can

be passed to the function
 a return type that describes the value of this

function in an expression

17

Defining Functions

 We have seen how to define functions
 int main() {
 declarations
 statements
 }

 Defining a function describes its return
value, its arguments and provides the
code that implements the function

18

Returning values

 Two ways to end execution in a function:
 Let the code fall off the end
 Use the return keyword

 return takes an optional argument - the
value to return
 return 0;
 or
 return;

4

19

Declaring Functions

 Sometimes we want to use a function
without describing how it works

 Declaring a function tells us its return type
and arguments but not its code.

 int putchar(int c);
 Like a function definition but with ‘;’

instead of a block

20

Declaring Functions

 We can omit argument names
 int putchar(int);

 The type of arguments is what matters
 Good practice recommends putting names

21

 “void” means “nothing”
 As an argument list: “no arguments”

 int getchar(void);
 As a return type: “no return value”

 void exit(int status);
 exit causes your program to end.

void

22

int main()?

 Why use: int main()
instead of: void main()

 The return value of main() is the
program’s exit status

 In main(),
return x; is the same as exit(x);

23

Declarations and Return Values

 Declarations (or definitions) are necessary
if a function does not return int

int main() {
 double atof(char *);
 printf(“%f\n”, atof(“5.3”));

}
 If we didn’t declare atof(), int would

be assumed
24

Beware!

 Returning a value from a function that
should return void is an error

 Returning nothing from a function that
should return a value is valid but
unpredictable
 Return value is undefined

 Do neither!

5

25

Scope

 Should be familiar
 Variables only exist within their block:
{

 int x;
 {
 int y;
 }
 /* y not defined here */

}
26

External (or Global) Variables

 What if we want a variable to be available
to more than one function?

 Declare it outside of a function:
 int x;
 void add_n_to_x(int n) {
 x += n;
 }

 Visible in all functions

27

 External variables can be overridden:
int x;
void add_n_to_x(int n) {

 x += n;
}
void set_x_to_m(int m) {

 int x;
 x = m;

}

global “x”

local “x”

External Variables

28

 External variables (as well as functions)
are visible in other C files

calc.c

extern int res;
void square(int x)
{

 res = x*x;
}

main.c

int res;
void square(int);

int main() {

 square(5);
 printf(“%d\n”,
 res);

}

Multiple Files

29

How C Programs are Compiled

 C programs go through three stages to be
compiled:
 Preprocessor - handles #define and #include
 Compiler - converts C code into binary

processor instructions (“object code”)
 Linker - puts multiple files together and creates

an executable program

30

How C Programs are Compiled

 When compiling multiple files, all .c files
are converted to .o files

 Then all .o files are combined (linked) to
make a program.

6

31

How C Programs are Compiled

 You do not have to do this all in one step
 “-c” creates just objects files (“compiles”

only)
 cc -c main.c

 Output defaults to “main.o”
 cc -c calc.c
 cc -o main main.o calc.o

32

Hiding Symbols

 By default, all global symbols (functions
and global variables) in a source file are
visible to the world.

 This is undesirable as it ‘pollutes’ the
global namespace and may expose
sensitive data.

33

Hiding Symbols

 Hide global symbols with static keyword
 static int variable;

 static has a different meaning inside a
function
 makes a variable persistent

34

static (Hiding)

int x;
static int y;

void func1(void) {

 y++; /* y can still be
 accessed in this file */

}

Visible to other files

Not visible to other files

35

static (Persistent Variables)

 Variables in functions are automatic
 They are created when the function is called

and vanish when the function returns
 External variables are by their nature

static.
 That is they never vanish, value is persistent

 What if we want a variable in a function to
be persistent?
 Declare it static

36

static (Persistent Variables)

int unique_int(void) {
 static int counter;
 return counter++;

}
 The value of “counter” is preserved

between calls to unique_int
 Question: initial value of counter?

7

37

static (Persistent Variables)

 Normally variables are not initialized for
you (i.e. their values are undefined)

 However, for static variables (and external
variables) they are explicitly initialized to
zero

 So the first call to unique_int returns 0

38

The C Preprocessor

 Handles ‘#define’ and ‘#include’
 Removes comments
 Preprocesses C file

 processes it before compiling it

 Output is C code

39

#define

 #define defines macros
 Macros substitute one value for another

 #define IN 1
 state = IN;

becomes
 state = 1;

40

#define

 Macros can also have arguments
 e.g.

 #define SQUARE(x) x*x
 y = SQUARE(4);

becomes
 y = 4*4;

41

#define

 Be careful with arguments
 SQUARE(5+2)

 becomes
 5+2*5+2 = 17 (!)

 Use parentheses defensively, e.g.
 #define SQUARE(x) ((x)*(x))
 ((5+2)*(5+2)) = 49

42

#define

 A macro should only be defined once
 #define X 5
 #define X 3 -- warning

 The name of a macro is important (not its
arguments)

 #define X(x) x
 #define X(x,y) x+y -- warning

8

43

#define

 Macros in substituted values are also
evaluated:

 #define Y Z y
 #define Z z

 Y becomes z y

44

#define

 However - there is no recursion:
 #define Y Z y
 #define Z Y z

 Y becomes Y z y

 Any given macro is only substituted once

45

‘#’ operator

 In macros, ‘#’ can be used to make a string

#define PRINT(x) printf(“%s\n”,#x)
PRINT(hello there);

becomes

printf(“%s\n”,“hello there”);

46

operator

 ## is the macro concatenation operator
 Puts two names together without space

between them
 #define GLUE(x,y) x##y
 GLUE(foo,bar)

becomes
 foobar

47

#undef

 However, what we can define, we can
undefine

 #define X 3
 X is replaced with “3”

 #undef X
 X is not replaced

 #define X 4
 X is replaced with “4”

48

#if - Conditional Compilation

 We can also use the preprocessor to
select what code to compile

#if 1
/* This gets compiled */
#else
/* This doesn’t */
#endif

9

49

#if - Conditional Compilation

 #if takes a constant integer expression
and macros can be used

#define DEBUG 1
#if DEBUG
printf(“debugging message\n”);
#endif

50

#if - Conditional Compilation

 We can also test to see if a macro is
defined

 #if defined(DEBUG)
 printf(“debugging\n”);
 #endif
 #if !defined(DEBUG)
 printf(“not debugging\n”);
 #endif

51

#if - Conditional Compilation

 defined() and !defined() are so common
we have constructs for them:
 #ifdef DEBUG
 printf(“debugging\n”);
 #endif
 #ifndef DEBUG
 printf(“not debugging\n”);
 #endif

52

#if - Conditional Compilation

 Often used for platform-specific features

 #ifdef MACOSX
 /* Mac code */…
 #else
 /* Other code */
 #endif

53

#include & Header Files

 #include inserts the contents of another
file at this point (we talked about this
before)

 #include is usually used for header files,
and header files are really just C code
 Function declarations
 Macro definitions
 External variable declarations

 Do this in one spot so other files can just
include the header file 54

 Introduce “calc.h” as a header file
 Contains declarations for “res” and
“square”

calc.h

extern int res;
void square(int x)

Multiple Files Revisited

10

55

 Now include this header file in both C files
 Note that we still need to define “res”
calc.c

#include “calc.h”
void square(int x)
{

 res = x*x;
}

main.c

#include “calc.h”
int res; /*!!*/
int main() {

 square(5);
 printf(“%d\n”,
 res);

}

Multiple Files Revisited

56

calc2.h

#ifndef CALC2_H
#define CALC2_H
extern int res;
void square(int x);
#endif

Putting It All Together

 A common use of #ifndef is to protect
header files from being included more than
once

57

Playing with the C Preprocessor

 Try:
 cc –E main.c

 or with any other C file
 -E means “just run the preprocessor”

Next time ...

 Arrays and pointers (chapter 5, C book)

58

