
1

Control Flow (Chapter 3)

CSE 2031
Fall 2012

1 September 24, 2012

Statements and Blocks (3.1)

 Statement: followed by a semicolon.
 Block

 enclosed between { and }
 syntactically equivalent to a single statement
 no semicolon after the right brace

 Variables can be declared inside any block.

2

Control Flow Statements

 Similar to Java
 if – else
 else – if
 switch
 while
 for
 do – while

 break
 continue
 goto
  labels

3

if – else

if (n > 0)
 if (a > b)
 z = a;
 else
 z = b;

if (n > 0) {
 if (a > b)
 z = a;
}
else
 z = b;

4

if – else – if

int binary_search(int x, int v[], int n) {
 int low, high, mid;
 low = 0;
 high = n - 1;
 while (low <= high) {
 mid = (low + high)/2;
 if (x < v[mid])
 high = mid + 1;
 else if (x > v[mid])
 low = mid + 1;
 else /* found match */
 return mid;
 }
 return -1; /* no match */

} 5

switch
while ((c = getchar()) != EOF) {
 switch (c) {
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 ndigit[c-'0']++;
 break;
 case ' ':
 case '\n':
 case '\t':
 nwhite++;
 break;
 default:
 nother++;
 break;
 }

}
6

2

7

Switch

 All cases must be:
 unique (cannot duplicate cases)
 constant, e.g. case 2*x: is invalid

 Guidelines
 avoid deliberate fall-through
 put a “break” at the end of the switch statement

while and for Loops

while ((c = getchar()) == ' ' || c == '\n'
 || c = '\t')
 ; /* skip white space characters */

for (i = 0; i < n; i++)
 ...

8

do – while

do {
 s[i++] = n % 10 + '0';
} while ((n /= 10) > 0);

Note: the above curly brackets are not necessary. They

just make the code more readable.

9

continue

Skip negative elements; increment non-negative elements.

for (i = 0; i < n; i++) {
 if (a[i] < 0) /* skip negative */

 continue;
 a[i]++; /* increment non-negative */
}

10

break

Return the index of the first negative element.

...
for (i = 0; i < n; i++)
 if (a[i] < 0) /* 1st negative element */
 break;
if (i < n)
 return i;
...

11

goto and Labels

Determine whether arrays a and b have an element in common.

 for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 if (a[i] == b[j])
 goto found;
 /* didn't find any common element */
 ...
found:
 /* got one: a[i] == b[j] */
 ...

12

3

Notes

 Code that relies on goto statements is generally
harder to understand and to maintain. So goto
statements should be used rarely, if at all.

 break and continue should be used only
when necessary.

13

Functions and Program
Structure (Chapter 4)

CSE 2031
Fall 2012

14 September 24, 2012

15

Program Structure

 C programs are comprised of variables
and functions.

 We have discussed variables, expressions
and control flow.

 We now want to combine these into a
program

16

Functions

 A function is a set of statements that may
have:
 a number of arguments, that is values that can

be passed to the function
 a return type that describes the value of this

function in an expression

17

Defining Functions

 We have seen how to define functions
 int main() {
 declarations
 statements
 }

 Defining a function describes its return
value, its arguments and provides the
code that implements the function

18

Returning values

 Two ways to end execution in a function:
 Let the code fall off the end
 Use the return keyword

 return takes an optional argument - the
value to return
 return 0;
 or
 return;

4

19

Declaring Functions

 Sometimes we want to use a function
without describing how it works

 Declaring a function tells us its return type
and arguments but not its code.

 int putchar(int c);
 Like a function definition but with ‘;’

instead of a block

20

Declaring Functions

 We can omit argument names
 int putchar(int);

 The type of arguments is what matters
 Good practice recommends putting names

21

 “void” means “nothing”
 As an argument list: “no arguments”

 int getchar(void);
 As a return type: “no return value”

 void exit(int status);
 exit causes your program to end.

void

22

int main()?

 Why use: int main()
instead of: void main()

 The return value of main() is the
program’s exit status

 In main(),
return x; is the same as exit(x);

23

Declarations and Return Values

 Declarations (or definitions) are necessary
if a function does not return int

int main() {
 double atof(char *);
 printf(“%f\n”, atof(“5.3”));

}
 If we didn’t declare atof(), int would

be assumed
24

Beware!

 Returning a value from a function that
should return void is an error

 Returning nothing from a function that
should return a value is valid but
unpredictable
 Return value is undefined

 Do neither!

5

25

Scope

 Should be familiar
 Variables only exist within their block:
{

 int x;
 {
 int y;
 }
 /* y not defined here */

}
26

External (or Global) Variables

 What if we want a variable to be available
to more than one function?

 Declare it outside of a function:
 int x;
 void add_n_to_x(int n) {
 x += n;
 }

 Visible in all functions

27

 External variables can be overridden:
int x;
void add_n_to_x(int n) {

 x += n;
}
void set_x_to_m(int m) {

 int x;
 x = m;

}

global “x”

local “x”

External Variables

28

 External variables (as well as functions)
are visible in other C files

calc.c

extern int res;
void square(int x)
{

 res = x*x;
}

main.c

int res;
void square(int);

int main() {

 square(5);
 printf(“%d\n”,
 res);

}

Multiple Files

29

How C Programs are Compiled

 C programs go through three stages to be
compiled:
 Preprocessor - handles #define and #include
 Compiler - converts C code into binary

processor instructions (“object code”)
 Linker - puts multiple files together and creates

an executable program

30

How C Programs are Compiled

 When compiling multiple files, all .c files
are converted to .o files

 Then all .o files are combined (linked) to
make a program.

6

31

How C Programs are Compiled

 You do not have to do this all in one step
 “-c” creates just objects files (“compiles”

only)
 cc -c main.c

 Output defaults to “main.o”
 cc -c calc.c
 cc -o main main.o calc.o

32

Hiding Symbols

 By default, all global symbols (functions
and global variables) in a source file are
visible to the world.

 This is undesirable as it ‘pollutes’ the
global namespace and may expose
sensitive data.

33

Hiding Symbols

 Hide global symbols with static keyword
 static int variable;

 static has a different meaning inside a
function
 makes a variable persistent

34

static (Hiding)

int x;
static int y;

void func1(void) {

 y++; /* y can still be
 accessed in this file */

}

Visible to other files

Not visible to other files

35

static (Persistent Variables)

 Variables in functions are automatic
 They are created when the function is called

and vanish when the function returns
 External variables are by their nature

static.
 That is they never vanish, value is persistent

 What if we want a variable in a function to
be persistent?
 Declare it static

36

static (Persistent Variables)

int unique_int(void) {
 static int counter;
 return counter++;

}
 The value of “counter” is preserved

between calls to unique_int
 Question: initial value of counter?

7

37

static (Persistent Variables)

 Normally variables are not initialized for
you (i.e. their values are undefined)

 However, for static variables (and external
variables) they are explicitly initialized to
zero

 So the first call to unique_int returns 0

38

The C Preprocessor

 Handles ‘#define’ and ‘#include’
 Removes comments
 Preprocesses C file

 processes it before compiling it

 Output is C code

39

#define

 #define defines macros
 Macros substitute one value for another

 #define IN 1
 state = IN;

becomes
 state = 1;

40

#define

 Macros can also have arguments
 e.g.

 #define SQUARE(x) x*x
 y = SQUARE(4);

becomes
 y = 4*4;

41

#define

 Be careful with arguments
 SQUARE(5+2)

 becomes
 5+2*5+2 = 17 (!)

 Use parentheses defensively, e.g.
 #define SQUARE(x) ((x)*(x))
 ((5+2)*(5+2)) = 49

42

#define

 A macro should only be defined once
 #define X 5
 #define X 3 -- warning

 The name of a macro is important (not its
arguments)

 #define X(x) x
 #define X(x,y) x+y -- warning

8

43

#define

 Macros in substituted values are also
evaluated:

 #define Y Z y
 #define Z z

 Y becomes z y

44

#define

 However - there is no recursion:
 #define Y Z y
 #define Z Y z

 Y becomes Y z y

 Any given macro is only substituted once

45

‘#’ operator

 In macros, ‘#’ can be used to make a string

#define PRINT(x) printf(“%s\n”,#x)
PRINT(hello there);

becomes

printf(“%s\n”,“hello there”);

46

operator

 ## is the macro concatenation operator
 Puts two names together without space

between them
 #define GLUE(x,y) x##y
 GLUE(foo,bar)

becomes
 foobar

47

#undef

 However, what we can define, we can
undefine

 #define X 3
 X is replaced with “3”

 #undef X
 X is not replaced

 #define X 4
 X is replaced with “4”

48

#if - Conditional Compilation

 We can also use the preprocessor to
select what code to compile

#if 1
/* This gets compiled */
#else
/* This doesn’t */
#endif

9

49

#if - Conditional Compilation

 #if takes a constant integer expression
and macros can be used

#define DEBUG 1
#if DEBUG
printf(“debugging message\n”);
#endif

50

#if - Conditional Compilation

 We can also test to see if a macro is
defined

 #if defined(DEBUG)
 printf(“debugging\n”);
 #endif
 #if !defined(DEBUG)
 printf(“not debugging\n”);
 #endif

51

#if - Conditional Compilation

 defined() and !defined() are so common
we have constructs for them:
 #ifdef DEBUG
 printf(“debugging\n”);
 #endif
 #ifndef DEBUG
 printf(“not debugging\n”);
 #endif

52

#if - Conditional Compilation

 Often used for platform-specific features

 #ifdef MACOSX
 /* Mac code */…
 #else
 /* Other code */
 #endif

53

#include & Header Files

 #include inserts the contents of another
file at this point (we talked about this
before)

 #include is usually used for header files,
and header files are really just C code
 Function declarations
 Macro definitions
 External variable declarations

 Do this in one spot so other files can just
include the header file 54

 Introduce “calc.h” as a header file
 Contains declarations for “res” and
“square”

calc.h

extern int res;
void square(int x)

Multiple Files Revisited

10

55

 Now include this header file in both C files
 Note that we still need to define “res”
calc.c

#include “calc.h”
void square(int x)
{

 res = x*x;
}

main.c

#include “calc.h”
int res; /*!!*/
int main() {

 square(5);
 printf(“%d\n”,
 res);

}

Multiple Files Revisited

56

calc2.h

#ifndef CALC2_H
#define CALC2_H
extern int res;
void square(int x);
#endif

Putting It All Together

 A common use of #ifndef is to protect
header files from being included more than
once

57

Playing with the C Preprocessor

 Try:
 cc –E main.c

 or with any other C file
 -E means “just run the preprocessor”

Next time ...

 Arrays and pointers (chapter 5, C book)

58

