September 24, 2012

Control Flow (Chapter 3)

CSE 2031
Fall 2012

Statements and Blocks (3.1)

Statement: followed by a semicolon.
Block

enclosed between { and }
syntactically equivalent to a single statement
no semicolon after the right brace

Variables can be declared inside any block.

Control Flow Statements

Similar to Java
1f - else
else - 1f
switch
while

for

do - while

break
continue
goto
labels

If — else

if (n > 0)
if (a > b)

else

if (n > 0) {
if (a > b)

If —else —if

int binary search(int x, int v[], int n) {
int low, high, mid;
low = 0;
high = n - 1;
while (low <= high) {
mid = (low + high)/2;
if (x < v[mid])
high = mid + 1;
else if (x > v[mid])
low = mid + 1;
else /* found match */
return mid;

}

return -1; /* no match */

switch

while ((c = getchar()) != EOF) {
switch (c) {
case '0': case 'l': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
ndigit[c-'0"']++;
break;
case ' ':
case '\n':
case '\t':
nwhite++;
break;
default:
nother++;

break;

Switch

All cases must be:
unique (cannot duplicate cases)
constant, e.qg. case 2*x: isinvalid

Guidelines

avoid deliberate fall-through
put a “break” at the end of the switch statement

while and for Loops

while ((c = getchar()) == "' "' || ¢ == "\n'
Il ¢ = "\t")
; /* skip white space characters */

for (1 = 0, 1 < n; i++)

do — while

do {
s[i++] = n % 10 + '0"';
} while ((n /= 10) > 0);

Note: the above curly brackets are not necessary. They
just make the code more readable.

continue

Skip negative elements; increment non-negative elements.

for (i = 0; 1 < n; i++) {
if (a[i] < 0) /* skip negative */
continue;

a[i]++; /* increment non-negative */

10

break

Return the index of the first negative element.

for (1 = 0, 1 < n; i++)
if (a[i] < 0) /* 1lst negative element */
break;
if (i < n)

return 1i;

11

goto and Labels

Determine whether arrays a and b have an element in common.

for (i = 0; i < n; i++)
for (J = 0; j < m; J++)
if (a[i] == b[]])
goto found;

/* didn't find any common element */

found:
/* got one: a[i] == b[j] */

12

Notes

Code that relies on goto statements is generally
harder to understand and to maintain. So goto

statements should be used rarely, if at all.

break and continue should be used only
when necessary.

13

September 24, 2012

Functions and Program
Structure (Chapter 4)

CSE 2031
Fall 2012

Program Structure

C programs are comprised of variables
and functions.

We have discussed variables, expressions
and control flow.

We now want to combine these into a
program

15

Functions

A function is a set of statements that may
have:

a number of arguments, that is values that can
be passed to the function

a return type that describes the value of this
function in an expression

16

Defining Functions

We have seen how to define functions

int main() {
declarations
statements

}

Defining a function describes its return
value, its arguments and provides the
code that implements the function

17

Returning values

wo ways to end execution in a function:
Let the code fall off the end
Use the return keyword

return takes an optional argument - the
value to return

return 0O;
or

return;

18

Declaring Functions

Sometimes we want to use a function
without describing how it works

Declaring a function tells us its return type
and arguments but not its code.

int putchar (int c);

Like a function definition but with “:’
instead of a block

19

Declaring Functions

We can omit argument names
int putchar (int);

The type of arguments is what matters
Good practice recommends putting names

20

void

“woid” means “nothing”

As an argument list: “no arguments”
int getchar (void) ;

As a return type: “no return value”
void exit(int status);

exit causes your program to end.

21

int main()?

22

Why use: int main ()
instead of: void main ()

The return value of main () is the
program’ s exit status

In main (),
return Xx; is the same as exit(x);

Declarations and Return Values

Declarations (or definitions) are necessary
If a function does not return int

int main() {
double atof (char *);
printf (“$£\n", atof(“5.37));

}

If we didn’ t declare atof (), int would
be assumed

23

Beware!

Returning a value from a function that
should return void is an error

Returning nothing from a function that
should return a value is valid but
unpredictable

Return value is undefined

Do neither!

24

Scope

Should be familiar
Variables only exist within their block:

{

int x;
{

int y;
}

/* y not defined here */

External (or Global) Variables

What if we want a variable to be available
to more than one function?

Declare it outside of a function:
int x;
void add n to x(int n) {
X += n;
}
Visible in all functions

26

External Variables

External variables can be overridden:
int X; < global “x”

void add n to x(int n) {

X += n;
}
void set x to m(int m) {

int x; <« local “x”

X = 1m,

Multiple Files

External variables (as well as functions)
are visible in other C files

calc.c

main.c

extern int res;
void square (int x)

{

res = x*x;

}

28

int res;
void square (int) ;

int main() {
square (5) ;
printf (“sd\n”
res) ;

How C Programs are Compiled

C programs go through three stages to be
compiled:
Preprocessor - handles #define and #include

Compiler - converts C code into binary
processor instructions (“object code”)

Linker - puts multiple files together and creates
an executable program

29

How C Programs are Compiled

When compiling multiple files, all .c files
are converted to .o files

Then all .o files are combined (linked) to
make a program.

30

How C Programs are Compiled

You do not have to do this all in one step

“-c” creates just objects files (“compiles”
only)

CcC -C maln.c
Output defaults to “main.o”
cc -c calc.c

CcC -0 mailin main.o calc.o

31

Hiding Symbols

By default, all global symbols (functions
and global variables) in a source file are
visible to the world.

This is undesirable as it ‘pollutes’ the
global namespace and may expose
sensitive data.

32

Hiding Symbols

Hide global symbols with static keyword
static i1nt variable;

static has a different meaning inside a
function
makes a variable persistent

33

static (Hiding)

int x; |Visible to other files

static 1int y; |Not visible to other files

void funcl (void) {
y++; /* y can still be
accessed in this file */

34

static (Persistent Variables)

Variables in functions are automatic

They are created when the function is called
and vanish when the function returns

External variables are by their nature
static.

That is they never vanish, value is persistent
What if we want a variable in a function to
be persistent?

Declare it static

35

static (Persistent Variables)

int unique int(void) ({
static i1nt counter;
return counter++;

}

The value of “counter” is preserved
between calls to unique int

Question: initial value of counter?

36

static (Persistent Variables)

Normally variables are not initialized for
you (i.e. their values are undefined)

However, for static variables (and external
variables) they are explicitly initialized to
Zero

So the first call to unique int returns O

The C Preprocessor

Handles ‘#define’ and ‘#include’
Removes comments

Preprocesses C file
processes it before compiling it

Output is C code

38

#Hdefine

#define defines macros
Macros substitute one value for another
#define IN 1
state = IN;
becomes

state 1;

39

#Hdefine

Macros can also have arguments
e.g.
#define SQUARE (x) x*x
y = SQUARE (4) ;
becomes
y = 4*%4;

40

#Hdefine

Be careful with arguments
SQUARE (5+2)
becomes
542*5+2 = 17 ()
Use parentheses defensively, e.q.
#define SQUARE (x) ((x)*(x))
((5+2) *(5+2)) = 49

41

#Hdefine

A macro should only be defined once
#define X 5
#define X 3 -- warning

The name of a macro is important (not its
arguments)

ffdefine X (x) x
#define X(x,y) x+y -- warning

42

#Hdefine

Macros In substituted values are also
evaluated:

#define Y Z y
#define Z z

Y becomes zZ y

43

#Hdefine

However - there Is no recursion:
#define Y Z y
#define Z Y z

Y becomes Yzvy

Any given macro is only substituted once

44

‘#" operator

In macros, ‘# can be used to make a string

#define PRINT (x) printf(“$s\n’, #x)
PRINT (hello there);

becomes

” (11

printf (“$s\n",“hello there”);

45

operator

I1s the macro concatenation operator

Puts two names together without space
between them

#define GLUE (x,y) =x##y
GLUE (foo,bar)

becomes
foobar

46

#undef

However, what we can define, we can
undefine

#define X 3
X is replaced with “3”
#undef X
X Is not replaced
#define X 4
X is replaced with “4”

47

#if - Conditional Compilation

We can also use the preprocessor to
select what code to compile

#if 1

/* This gets compiled */
#else

/* This doesn t */
#endif

48

#if - Conditional Compilation

#if takes a constant integer expression
and macros can be used

#define DEBUG 1

#if DEBUG

printf (“debugging message\n’) ;
#endif

49

#if - Conditional Compilation

We can also test to see if a macro is
defined

#if defined (DEBUG)

printf (“debugging\n”) ;
#endif
#if 'defined (DEBUG)

printf (“not debugging\n”
#endif

50

#if - Conditional Compilation

defined() and !defined() are so common
we have constructs for them:

#ifdef DEBUG

printf (“debugging\n”) ;
#endif
#ifndef DEBUG

printf (“not debugging\n”
#endif

51

#if - Conditional Compilation

Often used for platform-specific features

#ifdef MACOSX

/* Mac code */..
#else

/* Other code */
#endif

52

#include & Header Files

#include inserts the contents of another
file at this point (we talked about this
before)

#include is usually used for header files,
and header files are really just C code
Function declarations
Macro definitions
External variable declarations

Do this in one spot so other files can just
" include the header file

Multiple Files Revisited

54

Introduce “calc.h” as a header file

Contains declarations for “res” and
“square”

calc.h

extern int res;
void square (int x)

Multiple Files Revisited

Now include this header file in both C files
Note that we still need to define “res”

calc.c

main.c

#include “calc.h”
void square (int x)

{

res = x*x;

}

55

#include “calc.h”
int res; [*V 1%/
int main() {
square (5) ;
printf (“sd\n”,
res) ;

Putting It All Together

A common use of #ifndef is to protect

header files from being included more than

once
calc2.h

#ifndef CALC2 H
fdefine CALC2 H
extern int res;
void square (int x);
#endif

56

Playing with the C Preprocessor

ry.
cc -E main.c

or with any other C file
-E means “just run the preprocessor”

Next time ...

Arrays and pointers (chapter 5, C book)

58

